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ABSTRACT

This report deals with the properties of a restricted class of

homogeneous quadratic transformations, with interesting physical and

biological.analogues, which we have called Binary Reaction Systems. Al-1

possible transformations of this class in 3 variables have been studied

numerically on a computing machine, and the LLmiting behavior of random

initial vectors under iteration of each of these transformations is

tabulated. Some examples of 4-variable Binary Reaction Systems are also

studied, and a few generalizations of the notion of Binary Reaction

System are investigated for particular cases. Some remarks and results

concerning the behavior in the large are presented, and examples of the

mode of approach to the limit are given. Several of the more interesting

phenomena are illustrated graphically.

The appendix deals with a different class of homogeneous quadratic

transformations (of arbitrary dimension) which arise naturally from the

study of a simple evolutionary mode. For this class of transformations,

the limiting behavior of arbitrary vectors under iteration can be given

explicitly.
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INTRODUCTION

This report summarizes and discusses some recent studies of the

properties of quadratic transformations in several variables under

iteration. The report is of an interim nature, and consists mainly in a

presentation of “experimental” (i.e., numerical) results. A general

theory of quadratic transformations (in contrast to the linear case) is

essentially non-existent, and from the theoretical point of view, the

work summarized below does little to improve the situation. It can only

be hoped that as more facts become known, some outlines of a theory--

at least a classification or “descriptive theory’’--willemerge.

The motivation for the considerations which follow lies in the

combinatorial problems suggested by genetic or biological systems. One

has to deal with large populations of individuals (or particles) present

in a given generation. Those may combine in pairs and produce, in the

next generation, new particles. Suppose the original particles are of

N different types. Given a rule for the type i(i=l, . . . N) produced

by

‘i

of

mating of individuals of type j and k, the proportion or fraction

of a given type in the next generation will be a quadratic function

the two fractions Xj and Xk.

i’



More generally, one could consider a system (gas) of physical

particles with N possible characteristics which collide in pairs and

produce through the collision, say, a pair of particles with new charac-

teristics. There could be many different values of the momenta, ~u~

possibly the “type” of the particle resulting from the collision could

be different from the original ones.

Our present considerations concern the averages or expected

values of the fraction xi in the next generation. The role of fluctua-

tions or deviations from the fractions given by the quadratic formulae

will be studied in a subsequent report.

As suggested in the title, this report is the first of a series

(one might add, of unspecified length). By the time these remarks

appear in print, much of the work will probably have been generalized

and the results extended. It is hoped that at least some of the tenta-

tive conclusions presented below will stand.
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I. HOMOGENEOUS QUADRATIC TRANSFORMATIONS

We begin by

a set of N coupled

fOrm:

x: =
1

defining a homogeneous quadratic transformation as

non-linear first-order difference equations of the

k,2=1

k
where the 7. are some

1

kl
Yi = yi

lk

kl
Yi ‘kxli=l’””” N 1)

real numerical coefficients with the property:

2)

In the present work we restrict ourselves to the case of non-negative

coefficients:

3)

Then

also

if we choose the x. as non-negative real numbers, the x: will
J J

have this property. In the following we shall always restrict our

x. in this manner.
J

In order that

for a given index i,

the system 1) be of dimension N, we insist that

k~
not all 7i can vanish; i.e.,

9



4)

N

z k-!
Yi ‘0

k,l=l

Systems of tne form 1) (not necessarily with the restrictions of

reality or non-negativeness) can be considered from two points of view:

()‘1a) As the transformation of all vectors “ into vectors

()

‘; 4
.

or, more generally, as a mapping of some spec~ied
.

‘; region X into a region X’.

b) As a set of

of a vector

difference equations which determine the value

f’)
‘1 at “time” n from the value of some.

().‘N x(o)

()initial vector . .

“ (o)
‘N

If we take the first point of view we are, in effect, studying a single

iteration, the “mapping” in explicit form. The literature does contain

some sporadic work on tnis problem for low values of N.
(1)

On the other

hand, the second point of view does not seem to have been considered

except for the case of one dimension.
(2)

The general “solution” to the

71‘See, e.g., R. Sauer, Math. Ann. 106, 722 (1932)
O. Baier, Math. Ann. ~, 630 (1936)

(2)TO be sure, there is an extensive literature On coupled non-linear
differential equations of 1st order in 2 variables. See, e.g.$
Coddington and Levinson, Theory of Ordinary Differential Equations>
Chapters 15 and 16, McGraw-Hill, New York, 1955. For N variables,
a special class of differential equations is treated in V. Volterra~
Leqons sur la Thdorie Math~matique de la Lutte Pour La Vie, Gauthier-
Villars, Paris, 1939

10
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to the problem posed by b) is the explicit construction of the vector

-b(n) +(o)in terms of the initial vector x and the time-variable n.

Such a solution can only, in general, be presented as an iterative pro-

cedure. The most one can hope to do is to predict the limiting behavior

of the system as n + @ . Luckily, for practical applications this is

usually the only thing of interest. However, even this problem has

hardly been touched upon.

In the limit n+ a a variety of behaviors is possible; the

vectors may, for example, converge under iteration to a limiting vector

?, they may oscillate between a finite set of limit vectors ?i, or

they may exhibit a more or less chaotic behavior, i.e., do neither, but

have an ergodic behavior, i.e., the limit in time of the average

lN
f ZZ

xi will exist. (The last is familiar from Kronecker-Weyl’s theorem(3)

of ~~~ational rotations; see also Fn. 4.) The type of behavior, as well as

the numerical value of the limit (if it exists) may or may not depend on

;(0)
the initial vector . All the examples (with one exception--see

Section XI) studied in this report turn out to be of the first two types;

i.e., they either converge to a limit vector or converge to an oscillation

between a finite set of vectors in a definite order, i.e., with a definite

period.

‘>)See, e.g., H. Weyl, Math. Ann. ~, 313 (1916)

(4)
S. Ulam and J. von Neumann, Bull. Am. Math. Sot. ~, 1120 (1947)

11



II.

Formally, the system 1)

It proves convenient to reduce

postulating the condition:

N

NORMALIZATION

contains W kl
2

parameters, the yi .

this number (somewhat arbitrarily) by

2 kt
Yi = 1$ all k,l 5)

i=l

This has the great practical advantage that if we now normalize the

initial vector by the conditions:

N

z ‘i=s
i=l

then if we divide the right-hand side of each equation of 1) by the

constant S, we have:

N

E
X:=s
1 7)

i=l

In biological terminology (see below) this means that we restrict our-

selves to the case of a “constant population.” Of course, there is no

loss of generality in taking S = 1. In the sequel we therefore always

6)

12



impose condition ‘j),and

N

z ~(o) =
i

i=l

This, of course, reduces

of a different procedure

of the Appendix.)The xi

furthermore, take:

1, for all i with

8)

1

the number of variables to N-1. (For an example

when 5) is not postulated, see the last section

are now restricted to lie on the positive portion

of the hyperplane:

N

2 x. = 1
1

i=l

Even with all these restrictions, it has so far proved impossible to

give any general theory of the limiting behavior of the systems 1).

However, one sub-class, defined by certain reasonable restrictions on the

kl
coefficient y< , has been completely studied for all 1?. The results

J.

for this case are summarized in the Appendix.

is concerned with a discussion of a different

be of considerable interest, but for which no

exists.

The rest of the report

sub-class which seems to

general theory as yet

13



III. BINARY REACTION SYSTEMS

10 Equations 1) have a natural interpretation in terms of bio-

logical or genetic language. Consider a large population which consists

of N different “types” of individuals.(5) Let x. represent the fraction
J

of male individuals of type j. (We assume that there are equal numbers

of males and females of every given type, hence we may represent them

both by the same letter x.) xl is the fraction of the population of

type 1. Then the system 1), defined by the coefficients yiJ~, deter-

mines the composition of the next generation, which results from a

random pairing (once for each individual) of the population at the

present generation. If we assume that the members of the old generation

do not survive into the next, then for very large populations the expected

value of the fractions of the individuals of type j will be given by the

equations 1). By virtue of our restrictions:

N

z kl
Yi = 1, all k,l

i=l

5)

‘>)’These“types” are not, of course, meant to correspond to the genotypes
or phenotypes of Mendelian genetics!

14



the size of the population is constant. The system 1) can therefore be

looked upon simply as defining a “mating rule,” i.e., determining the

characteristics of the offspring from the characteristics of parents.

The problem, of course, is to determine the composition of the limiting

population.

2. As mentioned in II, the set of equations 1) is, in general,

very difficult to study. Consequently, we decided to restrict ourselves

initially to a sub-class of systems defined by the following additional

kl:
restrictions on the coefficients yi

For each pair k, 1, there is exactly one value of i

kl
for which yi = 1. For all other values of i the

coefficient is zero; i.e.,

kf=b
Yi ii 9)

3..

where each pair (k)l) determines one value of i..

This means that every term in the product (xl+ x2

appear in exactly one row of the set (cross-terms

factor 2). For example,

J.

+ XN)
2

. . . will

appearing with the

15



‘i =
‘; =

‘; =
‘i =

2 2+X2
‘1 + ‘2 4

2X1X3 + a2x3

2X1X2

’32

N(N+l)
Since there are z terms in

+ 2X1X4 + 2X2X4 + 2X3X4

the square of the sum, the number

different possible systems of this sort is clearly equal the number

N(N+l)
ways of placing ~ different objects in N boxes, no box being

empty. Setting P= N(N+l)/2, this number is easily shown to be :

TN=l?-(~)(N-l)p+ (N) (N-2)P-. . ● .

2

of

of

10)

For example,

‘3
= 540

T4 = 818,520

Naturally, umny of these are equivalent to each other under permutation

of the indices 1,2> . . . N. A lower limit to the number SN of different

systems, inequivalent by

* ‘N
‘N==

permutation, is:

11)

In fact, the number SN of inequivalent systems (in this sense) will be

somewhat higher than this because of the fact that some of the systems

are formally invariant under certain of the N! permutations. Thus, for

16



N=3, T;= 90, but by actual enumeration it is found that there are 97

inequivalent systems, i.e., SN= 97“ For N*, T;= 34,105; at the present

writing the actual number S
N
of inequivalent systems has not been

determined by us.

We have called systems restricted by

Systems.” The reason for this name is that

each pair (x x ) a unique result, say x’..
k’ 1 J

This seems to us to be a natural and simple

condition 9) “Binary Reaction

such a system associates with

Symbolically:

12)

definition for binary

reactions in which “particles” of types k and 1 produce by “collision”

particles of type j. (The “genetic” case is

see, for instance, the Appendix.)

More general and natural, though less

the form:

i.e., a pair of particles produces a pair of

particles. We have

12), though not yet

The reaction

e.g., the system:

inherently more complicated;

simple, would be a rule of

15)

not necessarily similar

studied a few generalizations of

in comparable detail (see below,

rule may be presented in tabular

the simple scheme

Section VII.2).

form. Consider,

17



2 2
=x+x

‘; 1 2 + 2X2X3
1

2
‘; = 2X1X3 + ‘3

)
‘; = a 1X2

The table for this would be:

‘1 ‘2 ‘3

‘1 ‘1 ‘3 ‘2

‘2 ‘3 ‘1 ‘1

‘3 ‘2 ‘1 ‘2

Considered as an algebraic system with a law of

cation) given by the table, this scheme is

(xixJ = ~ ~x.x ) but non-associative,

(X1X2)X3=X3X3 =x2

X1(X2X3) = Xlxl = xl

e.g.,

Binary reaction systems> as defined above>

each product occurs in only one of the set

seen

14)

15)

composition (multipli-

to be commutative

are always commutative (since

of equations) but are not

in general associative. Indeed, for N=3 there are just five associative

schemes of this sort: I

I

18



‘1 ‘2 ‘3
—.

‘1 ‘1 ‘2 ‘1

‘2 ‘2 ‘1 ‘2

‘3 ‘1 ‘2 ‘3

‘1 ‘2 ‘3

‘1 ‘1 ‘1 ‘1

‘2 ‘1 ‘2 ‘3

‘3 ‘1 ‘3 ‘1

‘1

‘2

‘3

-i-

‘1 ‘2

‘2 ‘3

+

‘3 ‘1

‘1 ‘2

‘1 ‘2 ‘3

‘1 ‘1 ‘1 ‘1

‘2 ‘1 ‘2 ‘2

‘3 ‘1 ‘2 ‘3

‘1 ‘2 ‘3

‘1 ‘1 ‘1 ‘1

‘2 ‘1 ‘2 ‘1

‘3 ‘1 ‘1 ‘3

‘3

‘1

‘2

‘3

This last table corresponds to the finite group in 3 variables.

Although tinisclassification is suggestive, it does not appear that these

associative systems are distinguished from the non-associative ones as

regards their convergence properties. This is at least the case for

N=3, and the presumption is that no particular significance will attach

19



to the associative property for higher N either. However, if the

“reaction table” possesses the properties of a group table, certain

special properties are easy to establish; e.g.:

The fixed point of the transformation has coordinates

1
‘1=X2= ”””XN= ~

and is attractive, i.e., the iterates

of any vector in its neighborhood converge to it.

20



Iv.

At this point it is

cedure and results in some

quently in what follows.

PRW3XJRE AND RESULTS

necessary to describe our experimental

detail, since they will be referred to

pro-

fre-

As stated above, for the case of 3 variables, X7, XO, xx, there
J-C J

are 97 binary reaction systems inequivalent to each other under permuta-

tion of the labels 1, 2, 3. Each one of these has been studied numerically

(on an IBM 704) by having the machine select randomly three initial

(o), ~ (o), ~
z

x (0)=‘0) (satisfying ivectors with coordinates ‘1 2 3
‘0) < 1) and letting the computer iterate the transformation in1, O<xi -

question ‘taslong as necessary,” i.e., until some definite limiting

behavior was observed.(6) In all but two cases such limiting behavior

became evident without further analysis (one “ambiguous” case is dis-

cussed in Section IX.l; the other is mentioned in Section XI). All

other transformations eventually either:

a) Reached a stable distribution or a “fixed point” of the

transformation, or

(6‘Although the sum X1+ X2+ x~= 1 is formally conserved, it is necessary

to normalize at each step to avoid loss of accuracy by round-off errors

in the last digit.

21



b) Oscillated between two or three fixed sets of values.

Only in (relatively) few cases did the behavior depend on the choice of

the initial vector. However, the rate of convergence (used in the gen-

eralized sense to refer to both fixed points and “fixed” oscillations)

often varied considerably with this choice.

The main results are contained in Table II. Here each system is

written down in symbolic form, the results of iteration being given

below. Each system has attached to it a conventional symbol, e.g.,

1.5.p, 11.1.d, etc. The Roman numerals 1, 11, III refer to a distribu-

tion of quadratic terms on the right-hand side corresponding respectively

to the three partitions of 6 into exactly 3 parts, viz.: (3,2,1), (4,1,1),

(2,2,2). The other symbols refer to distributions within

divisions, and are purely conventional. (They

order in which we have examined these cases on

A few examples will serve to illustrate

a) Consider the system:

‘; = 2X1X2 + 2X1X3 + 2x x23

2 2
‘l’=xl ‘X3

‘i = ’22

correspond

these main

to a particular

computing machines.)

the notation.

Conventional name: 1.6.b

In Table II this appears symbolically as:

22



2(1.2)+ 2(13) + 2(23)

(11) + (33)

(22) 1b.d.p.

not degenerate

i.f.p. given by (x = X2):
‘1

= .563n573

~4+~3.x2-3x+l.o
‘2

= ●32878482
1

i.f.p.

m ~ i.f.p.

The notation b.d.p. means that if

limiting configuration will be an

(xl= O, x2= 1, X3= O) and (xl= O,

“boundarydouble point” (b.d.p.).

‘3 =
.10809945 J

any of the initial x’s = 12 the

oscillation between the two states:

‘2
=O,x y= 1). This we call a

Since i.tis evident from the structure

of the system which variables will assume these values, it is not

necessary to specify the b.d.p. more completely. In some systems the

b.d.p. will only be reached if either of some two rather than any of

all 3 variables is initially equal to 1. These cases are always

immediately obvious from the structure of the system.

The words “not degenerate” mean that if initially we have some

xi(o)
= O, it will not automatically remain so for all time, i.e., that

‘i
is not a factor of the r.h.s. of the

i.f.p. (x = X2) followed by an equation

interior fixed point (i.f.p.), that is,

~th
equation. The notation

means that there exists an

a fixed point with no xi= o,

and that the value of one of the variables (in this case x ) is given
2

by the relevant root of the equation. This equation is simply gotten

by suppressing the primes on the l.h.s. and eliminating two of the

23



variables. By relevant root we mean a real root between O and 1 which

satisfies the set (sometimes extraneous roots are introduced in tne

elimination process; these

right of this is given the

equation. The notation m

carried out on the machine

do not satisfy the original set). To the

resulting fixed point obtained from this

- i.f.p. means that the transformations as

actually converged to this value (to 8 deci-

mal places) for three random initial vectors.

b) As a second example, consider:

2
‘; ‘xl + 2X1X2 + 2X1X3

2 2
‘:=X2 ‘X3

‘i = 2X2X3

In Table II this appears as:

(11) +2(I_2) +2(13)

(22) 1-(33)

2(23) 1

no i.f.p.

m ~ n.f.p. (xl= 1)

Conventional name: 1.4.a

2 n.f.p.’s

b.f.p.

doubly degenerate

n.f.p. means “nodal fixed point” and refers to the fact that x = 1,
i

for at least one value of i, is a fixed point. b.f.p. or “boundary

fixed point” means that there exists a fixed point for which one x = O.

In view of the explanation of “not degenerate,” the term “doubly

24



Conventional name: 111..l.f

degenerate” is self-explanatory. “NO i.f.p.” means that there is no

interior fixed point, and m + n.f.p. (xl= 1) means that the system

converged ‘tox~= 1 for 3 randomly chosen initial vectors.

c) Consider finally:

2 2
‘i=xl ‘X3

‘i ‘%X3 ‘*2X3

2
‘i ‘%X2 ‘X2

In Table II (leaving out some explanatory material with regard to the

b.d.p.):

(11) +(33)

}

n.f.p.

2(13) +2(23) b.d.p.

2(12) + (22) not degenerate

i.f.p. givenby (x =X3):
‘1

= .16374000

1- 4(1-X)3 = o
‘2

= .M622052

1

i.f.p.

m + i.d.p.
‘3

= .37003948

‘1
= .17899745

‘1
= .40604579

‘2
= .209U2~

‘2
= .47510870

1
i.d.p.

‘3
= .61156007

‘3 =
.11884551 J

In this case the transformation did

rather ended up oscillating between

achieved an “interior double point”

not converge to the i.f.p.} but

two sets of valuesj that is, it

(i.d.p.).

25



We hope that with these examples in mind, it will be possible

to interpret Table II. In a few instances, some remarks are appended,

but these are self-explanatory.

26



v. CONVERGENCE BEHAVIOR

To date we know of no criterion which enables one to predict

combinatorially, i.e., from an inspection of the reaction table, whether

or not the limiting behavior of a given system will be true convergence

(fixed point attained), oscillation betweena finite set of limit vectors

(periodic point), or neither. For general N, such a criterion will

certainly not be simple; it would, for instance, have to take into

account the various boundary fixed points and boundary periodic points

which are,of necessity, present in any binary reaction system. Of

course, every binary reaction system has either boundary fixed points

or boundary periodic points (or both). (From Brouwer’s fixed point

theorem it follows that at least one fixed point must exist.) In

other words, the behavior of boundary points under iteration will always

have to be treated specially.

An example of this type of complication is provided by system

I.1.c. Transcribed from Table II, this reads:

27



2 2 2
‘;=xl ‘X2 ‘X3

‘; = 2X1X3 + a2x3

‘;
= 2X1X2

First of all, it is clear that xi(0)= 1 will lead to the n.f.p.

‘1= 1“ Furthermore, it is clear that a b.d.p. exists, namely:

xl= 1/2

‘2= 0

‘3
= 1/2

xl= 1/2

X2= 1/2

‘3= 0

Experimentally, for three different randomly chosen interior

vectors, the systems converged to the i.f.p. given in the table.

Other special cases have a behavior more difficult to discover;

e.g., the system 111.1.f, in addition to the i.f.p., has the periodic

solution:

‘1 = .3194W346 ‘1 = .56519772

‘2=0 ‘2
= .43480228

‘3
= .68055154

‘3=0

(o) or (d= ().which is attained if x
2 ‘3

For our randomly selected initial vectors, however, the system

attains the i.d.p. given in the table.
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One might think that things get simpler if we consider only

interior initial points. Several examples, however, show that even here

nothing universally true can be asserted. For example, the system 1.2.m

attained its i.f.p. with two different initial vectors, but went to

the b.d.p. from a third initial vector.

The situation clearly gets more complicated in higher dimensions,

where the classification of special boundary solutions in general depends

on a complete knowledge of the behavior of lower-dimensional systems.

One may consider, in order to determine whether the fixed point

of the transformation is “attractive” or “repellent,” the value of the

Jacobian of the transformation or the fixed point. If, for example,

the absolute value of the Jacobian is > 1, then, in general, iterates

of points in every neighborhood of the fixed point will diverge from it.

A summary of the convergence behavior in all 97 three-variable

systems for random initial vectors is given in Table I. In 23 systems

there is convergence to xi= 1, for some i. Twelve converged to a b.f.p.,

15 to ab.d.p.,k to an i.d.p., 4 to ab.t.p. (boundary

one to an interior triple point, while 6 showed varying

on the initial conditions. (This class may turn out to

more initial points sampled.) One does not converge at

triple point),

behavior depending

be larger with

all. All the

rest converged to an i.f.p.

The two systems 11.1.d and 11.1.f showed

and i.d.p.’sjrespectively, but this behavior is

not specially significant (see remarks in Table

29

a continuum of l.f.p.’s

easy to understand, and

II).



hkcept in 2 cases, systems 1.2.j and 111.2.3.a, convergence was

numerically evident (though occasionally extremely slow). 1.2.J is

particularly interesting, and is discussed in detail in Section IX.1.

111.2.3.a is briefly discussed in Section XI.
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VI. THE NATURE

1. Leaving aside for

OF THE INTERIOR FIXED POINTS

the moment the question of convergence, it

is of interest to inquire into the nature of the various i.f.p. Since

for a given N, there are a finite number of different systems, there are

only a finite number of i.f.p. These are, of course, defined by the

set of algebraic equations obtained on suppressing the primes on the

left-hand side of the systems in question. As mentioned above, from

Brouwer’s theorem it follows that there exists at least one fixed point,

but it need not lie in the interior. Frequently these systems have no

solutions such that O c xi< 1, all xi, which means that no i.f.p.

exists. Consider, for example, system I.1.a. The set of equations

defining the fixed point is:

2 2 2
‘l=X1 ‘X2 ‘X3

‘2 = %X2 + 2X1X3

‘3 = 2X2X3

Since, by definition of an i.f.p., x # O, we must have
3 ‘2

= 1/2; the

second equation then implies:
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1/2 = 2X1(1-X1), i.e., Xl = 1/2, so that

‘1 ‘X2 = 1’ ‘mplying ‘3 ‘0” ‘us ‘0 ‘“fop” ‘Xists”

In general, to find the i.f.p. we must eliminate two of the

variables. The resulting equation is then of 4th order in the remaining

variable, say xi, although it may have factors corresponding to

x. = 1, xi = O, or perhaps to extraneous roots like xi = -1. (In Table
1

II the equation listed is always in “reduced” form, with these factors

removed.) Occasionally the equation may have two real roots in the

interval O to 10 For N=3, in all such cases one of the roots proved to

be spurious, i.e., it did not satisfy the original system. In fact,

excepting the case 11.1.d, mentioned above,

i.f.p., no system had more than one i.f.p.

possible to give a complete theory of these

treatment for general N seems beyond reach.

which had a continuum of

Although it is doubtless

equations for N=3, a similar

Here the elimination process

N-1
can yield an (unreduced) equation of order 2 .

2. Bounds for the i.f.p.

Consider an i.f.p. satisfying:

16)

Clearly, we lose no generality by specifying this ordering, since we

can always carry out a permutation on the system so that 16) holds.

For a given N, the “largest” i.f.p. will be defined as that i.f.p. for
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which xl< 1 has the largest numerical value as we range overall

possible systems. (Since the number of systems is finite for finite N,

there will always exist a largest i.f.p.) The question then arises:

Given N, which system has the largest i.f.p., and what is the corres-

ponding value of xl? In view of the astronomical number of inequivalent

systems (for even moderate values of N) it is of some interest that a
●

partial answer can be given to this question.

For N=3, our complete study reveals that the system possessing

the largest i.f.p.--hereaftercalled the

for which the defining equations are (we

convenience):

‘1 = ’32 +
2=x

‘2 1

‘3 = ’22

The (unreduced) equation

2X1X2 + 2X1X3 +

is clearly (xS

2 41x +x +x =

which yields:

x= .56984029

“maximal system’’--is11.3.d,

interchange x2 and x for
3

a2x3

17)

xl) :

18)

19)

The natural generalization of this system to N dimensions is:
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2
‘l=xN +”””

()
= ~xi 2- 2X;

~ i=l i=l

‘3 = ’22
20)

.

.

.
2

‘N = ‘N-1

The root x = xl is then given as

P=N-1

fN(x) =
z

x$ .

N=O

a root of the equation:

1

This ,rootconverges very rapidly as N ~ ~ ; for example,

N =4: x= .566160865 . . .

N = 5:X= .566123797 . . .

N =C9: ~ = .566123792 ● . .

It is tempting

for all binary

to consider this last number as an N-independent

reaction systems. Unfortunately, this is false,

be shown below.

Consider a

I& us assume the

21)

22)

bound

as will

system with x, > 1/2 and satisfying the ordering 16).
J.

“skeleton”:
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2
‘1 = ‘1 ‘2X1X2+”””

‘2 ‘alx3 +”””

‘3 ‘2X1X4+”””

.
23)

.

.

‘N-1 ‘%XN +”””

‘N=”””

Clearly:

11=2-x x+ x+x+...
[

1‘xN<x~l+~+— +J- . . . 1
34 1 4X1* 8X13 (2X1)N-21

24)
l-xl

But <
‘2-T 25)

l-xl l-xl
or — > X2>

2 N-2 26)

z
(2X1)-P

pa

If we equate these bounds and set y = 2X1, we obtain the equation:

N-1
Y -2yN-2+l=o

Calling the root of this equation yN, it is evident from 26) that:

‘N
x<
1 -z-

27)

28)



Clearly, Y~ + 2 as N + m , i.e., the bound is N-dependent. One

might suspect at first that this bound is a very weak one, and that the

actual maximal system has a much lower i.f.p. However, that the bound
YN

is the best possible is proven by exhibiting a system for which ~ = xl

is actually attained. In fact, such a system is:

2
‘1 = ‘1 + 2X1X2

‘2 = %X3

‘3 = 2X1X4

.

.

.

‘N-l= “txN

‘N=&+23 ‘ix,= ‘X2+“ “ “ ‘.)’=‘1-XJ2
i-+ i< j-+

It is easily verified that this system has 27) as its i.f.p. equation.

For N = 4 -#-
1+ 5

‘1 =
= .80901699’3

30)

N = 5 ‘1 = .919643378

Experimentally (N=4,5,6), this i.f.p. is not attained on iteration

starting from a general point, but these converge to the n.f.p. ‘N= 1“

This is to be contrasted with the behavior of the system 20), which

actually attained its i.f.p. (N=3,4,5). Indeed, for system 29) it turns
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out that the absolute value of the Jacobian at the i.f.p. is (y =.2x1):

J N-2(2.y)(~ - 1) > 1‘Y

which makes it reasonable

On the other hand,

‘1= “ “ “

that this i.f.p. is not attractive.

it is clear that for a “skeleton” of the form:

2
‘2=X1+”””

=x +. . .
‘3 22

31)
.

.

.

2
‘N ‘xN-l+ “ “ “

we have:

.

.

.

2
2N-1

‘N 2xN-l~xl

N-1

AZ 2P
whence : 1 =

‘l+x2”””+xN~ ‘1
= fN(xl) 32)

p=il
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Therefore, for such a skeleton, the root of fN(x) = 1 does indeed

provide an upper bound (attained for the system 20)).

At this writing it’has not yet been shown that the system 29) is

actually maximal.

systems such that

However,

x, does
.

form 31) are a sub-class of

Namely, in this case:

a weak upper bound can be obtained for all

not contain the term x12 (skeletons of the

these).

XIG’XIO-XJ + (Lxl)a = 1 - X12

Therefore, clearly:

2 +Xl<l
‘1 -

or

33)

34)

However, we can do much better for

for xl> 1/2 we must have, under

\ > x:-l

this case. In fact, we can show that

the ordering 16):

35)

which then establishes the bound 21) by the previous argument.
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VII. PERIODIC LIMITS

For a large number of 3-dimensional systems, randomly chosen

initial vectors iterated to a periodic limit, i.e., the limiting behavior

was an oscillation of period 2 or 3 between fixed points. Twenty-four

systems exhibited this behavior for three initial vectors, while six

others achieved a similar limiting configuration for at least one choice

of initial vector (with no coordinates lying on the boundary). In most

of these cases the final state was of the form:

x (n)
=,, x%$n)=o, Xjn+’)= o,x:n+’)= l,xJn+’)=o;

i d

x (n+2)= ~ x (n+2)= ~(n+a)= ()~. 9; ;

i.e., a boundary double point. A

were also observed (cf. Table I).

for the reason that the algebraic

indicates that such a final state

few cases of a boundary triple point

Such final states we call “trivial,”

structure of the transformation alone

is at least possible. We may contrast

this “trivial” type of oscillatory final state with those for which the

oscillation takes place between two or three interior points. The latter

we call an “interior double point” (i.d.p.) or “interior triple point”

(i.t.p.).
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For N=3 we found just four examples of an i.d.p. and one of an

i.t.p. There was also one case of a “non-trivial”b.d.p. (system 1.2.e)

for which the final state was oscillatory with period 2, but between two

“non-trivial”boundary points, viz.:

‘1 = .36519772 ‘1 = .31944846

= .68055154‘2=0 ‘2

‘3
= .4348022

‘3=0

The existence of an interior double (or triple) point means that

the second (or third) power of the transformation possesses these limit

values as fixed points. The algebraic difficulty of finding such points

is in general prohibitive. For example, in the unique case of the

interior triple point (system 1.3.g), if we let:

(n+3) = (n) =x (n+l) (n+2) =Z
‘1 ‘1 ) ‘1 = Y> ‘1

then one coordinate of the triple point is determined by the set of

equations:

x = 1 2--z 2y2(l-y2)

Y = 1 - X2 - 222(1-22)

2
z=~-y- 2X2(1-X2)

36)

It may be verified that the successive values of xl ~iven in

Table II indeed satisfy this set of equations.
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Although there are no oscillatory limiting configurations with

periods greater than 3 for N=3, one can, of course, find such by going

to higher N. Indeed, we discovered, by chance, a particularly interesting

case, viz.:

2
‘i = ‘2 + 2X1X2 +2XX+2XX+2XX +2XX23 14 24 34

2
‘; = ‘4 + 2X1X3

=x
‘; 12

(1.5.j -ext - 1)

‘i ‘X32

This can be considered as one particular generalization of the

3-variable system 1.5.j. This generalization--whichwe applied to

several of our original systems(7)-- consists in setting
‘i ‘x32’

replacing x
32

in the original system by X42, and putting the new

cross-terms 2x4(xl+ x2+ x3) in

triply periodic case, 1.3.g, in

behavior (for 3 randomly chosen

period 3, but the configuration

the top line. When we generalized the

this manner, the resulting limiting

initial vectors) was still periodic with

was of the “trivial” sort, i.e., the

b.t.p. (1,0,0,0), (0,0,1,0), (0,0,0,1). However, in the case of 1.5.j,

whose resulting generalization is given above, the limiting configuration

was oscillatory with period 12. (The values of the coordinates are given

in Table III.) A further generalization to 5 variables, following the

same prescription, yields the system:

17‘See Table III for results.
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2
x; = ‘2 + 2X1X2 + 2X2X3

+ 2X4(X1+ X2+ X5) + 2X5(X1+ X2+ X3+ X4)

2
‘; = ‘~ + 2X1X3

‘i ‘X12 (1.5.j - ext - 2)

x{ = X32

‘; ‘X42

In this case, 3 random initial vectors achieved an oscillatory

limiting configuration of period 6. (See ‘TableIII for the numerical

values.)

In our opinion, it is not likely that the behavior

these two cases could be predicted by means of any simple

observed in

criteria.
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VIII. FORM STABILITY

1. In a few cases we investigated the effect of making slight

changes in the form of the equations themselves.

which makes the change of form depend on a single

Multiply each term by the factor 1 - e , and add

in each of the two other rows.

For example, the system 1.5.o is:

One way of doing this

parameter is as follows:

6/2 times the term

2
‘; ‘X3 + 2X1X2 + 2X2X3

2
x; ‘X2 + 2X1X3

2

‘; ‘xl

This was now modified to:

(1.5.0)

2 + 6/2 X2* + (1-6)X3 2 + 2(1- 6)X1X2 + 6X1X3
‘: = 6/2 xl + 2(1-6)X x23

‘;
= e/2 X12 + (1- C)X22 + e/2 X32 + ‘X1X2

+2(1- C)XX
13 + c ‘2X3

‘;
= (1-6)X12 + e/2 X22 + 6/2 X32 + 6X1X2 + 6 ‘1X3 + 6 ‘2X3

37)
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In this case it is easy to carry out the elimination of X2, x to
3

obtain the equation for the i.f.p. as a function of 6. There results:

4 3
blxl + b2xl + b3*32 ‘b4xl+b5=0

where the bi are given in terms of the parameter:

= 2-3e
a—~

as follows:

bl .~4

b2 .~3

b =~2-
3

2/3cx3(2+d)

b4 =a(l+2a) - $ (2icz)

~2
b=

5
- ; (2a+l) + ~ (2W)2

For E= O (a=l) we get (dividing out xl) the original i.f.p.

equation:

3+4X1? 1=0
‘1

38)

39)

40)

41)

At e= 2/3, a = O and all the coefficients bi vanish. This corresponds

to the set:

= l/3(x12+x22+x37 + 2/3(xlx2+ xlx3 2 3
‘;=X;=X;

+Xx) 42)

which reaches the i.f.p. (1/3, 1/3, 1/3) on a single iteration starting
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from any initial vector. In fact, as c + 2/3, all systems to which

this generalization is applied tend toward this simple case (since at

e = 2/3, 1-c =c/2).

For the system 1.5.0, generalized in this manner, we investigated

the convergence for several values of c, viz.:E= .001, .01, .05, .1.

In each case, randomly chosen initial vectors iterated to the i.f.p.

predicted by equation ~). In other words, there is a sort of continuity

in the convergence behavior as the form of the equation is changed in

this simple manner.

Slightly more interesting is the result of applying this one-

parameter generalization to the system 1.3.g. As mentioned above,

random initial vectors iterated according to this transformation reached

an oscillatory final state with period 3. Vectors under the generalized

transformation behaved in the same fashion, but as c was increased the

final-state oscillations decreased in amplitude, until at c S .045

general initial vectors appeared to converge to the i.f.p. predicted by

the corresponding i.f.p. equation. Presumably, the final state is still

oscillatory (with period 3), but the oscillations are too small to

observe with 8-decimal-place accuracy.
(8)

‘For C > 0, some initial points converged to the i.f.p. In other
words, the i.f.p. (which is a function of e ) appears to be attractive
for t >0. More detailed analysis would probably show that what is
happening is that the area of the region of the triangle for which
convergence (of a point in this region) is to the i.f.p., is increasing
with increasing e . Correspondingly, one is less likely to pick an
initial point outside this region, i.e., a point which will iterate
to the i.t.p. For further discussion of behavior in the large, see
Section XI.
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The conclusion to be drawn from these experiments is that binary

reaction systems are “stsble” under small perturbations of formal

structure.

2. When more radical changes of form are made, we do get corre-

spondingly greater changes in behavior. For instance, we took the above-

mentioned system 1.3.g and kept only the skeleton:

‘; = 1/2 X22 + 1/2 X32 ‘2X1X2+”””

‘; = 2X1X3 + 2X2X3 + “ “ “

‘i =
l/2x12+...

To this we added the missing terms 1/2 X12, 1/2 X22, 1/2 x 2
3

.inall

possible ways (i.e., 27 ways, of which one corresponds to the original

system). For 25 of the resulting 26 new transformations, random initial

vectors iterated to an i.f.p. (The results are summarized in Table IV.)

One system, however, gave an oscillatory final state with period 3, a

behavior analogous to that of the original system, viz.:

2
‘; = ‘2 + 1/2 x

32 + 2X1X2

‘; =1/2x2
3 + 2X1X3 + 2X2X3

44)

‘; ‘X12
The configuration of the final state (starting from 3 randomly chosen

initial vectors) was:
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(n+3)= (n)=
‘1 ‘1

(n+3)= x2(n)=
‘2

(n+3)= (n)=
‘3 ‘3

It is clear

.87777286, xl
(n+l)

= .00766150, Xl
( n+2)

= .34944206

.00011739, x2
(n+l)= .22185332, X2

( n+2)
= .6’j049g24

.12210975, X3
(n+l)

= .77048518,X3
(n+2)

= .00005870

that a “rule” which allows x3@x ~ xl or x2
3

(with equal probability) isarather unnatural one. A somewhat more

logical modification is to assume a skeleton in which the cross-terms

appear with coefficient unity, and to add the missing terms ‘lx2’

‘1x3’ ‘2x3’
in all possible ways. When this was done for 1.3.g,,all

the resulting transformations had an i.f.p., and in every case random

initial vectors iterated to the i.f.p. (see ‘IbbleV).

This change of rule has a natural interpretation; effectively

it allows non-commutativity, since, e.g., xi@x may give two results,
j

which we can interpret as the respective results of x x and x x..
iJ jl

Formally, this is an interesting generalization of the concept of a

binary reaction system (as originally defined), but the convergence

behavior does not appear to be startlingly different.

This same “non-commutative”generalization was tried on the

system 111.2.l.b; the results offered no surprises.
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IX. A SPECIFIC CONVERGENCE

1. The Exceptional Case 1.2.j

As mentioned above, there are only two

PROBLEM

systems among all the 97

which exhibit an ambiguous convergence behavior. The most interesting

of these has the form:

2 2
‘i = ‘1 + ‘3 + %X3

2
% = ‘2 + 2X1X2

(1.2.j)

‘i = ~2x3

The system is degenerate, and has two n.f-p.’s; in the following

we shall ignore the behavior of boundary points (since these present no

problem) and only discuss the behavior under iteration of interior points.

By inspection, it is evident that the system possesses the i.f.p.:
.

‘1 = ‘3
= 1/4

4.5)

‘2
= 1/2

For three randomly chosen (interior) initial points, little convergence

was evident even after some 85,000 iterations. In order to see better

what was happening, we introduced new coordinates:
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1+X - x
s

1= 3
2

46)

a= 1/2 x2

These are effectively Cartesian coordinates in the plane of the

triangle formed by the three vertices (1,0,0) (0,1,0) (0,0,1).

More specifically, in the original form of the transformation,

the xi’s are constrained to move on the positive portion of plane

xl+ X2-I-x = 1:
3

(1,0,0)

(0,0,1)
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For algebraic convenience, we distort the triangle into a 45°

triangle with base unity. The coordinates of a point in this triangle

are then (S,a), as shown in the sketch below. Here (0,0,1) (0,0)

(0,1,0) (1/2,1/2)

(1,0,0) (1,0)

1/2

Ta
(

In terms of these new coordinates, the transformation takes the

form:

S’=1 -4CX+4CX2+22S
47)

o!’‘as

and the i.f.p. is:

s = 1/2

a= 1/4

Note that the Jacobian of 47) is exactly 1 at the f.p. 48). For future

reference, we write down the inverse of 47):

48)
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s
“a’=

1-w=’
.,

1- Vz-7
cl= 2

If we now make the further transformation:

x = s- 1/2

Y =CX- 1/4

we get:

x’ = -y + x/2 + 4y2 i-2xy

Y’ = y + x/2 + 2xy

with i.f.p. x = y = O.

Note that if we consider only linear terms:

x’ = -y +x/2

Y’ = y + x/2

then an invariant ellipse exists:

X,2 2
+ X’y’ + 2y’ =x 2+xy+2y2

49)

50)

51)

52)

53)

Figure 1 shows a plot of the observed iterates in the x,y plane.

The three curves show the behavior of successive iterates, the initial

point of the sequence being taken respectively at n = 1550,n = 10,101,

n =75,001. Each curve is roughly an ellipse of the form:
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X2 +xy+2y2=c 54)

Numerically, at least, C appears to ~ O as n ~ co, or, to put it

another way, the axes of the ellipse of reference are shrinking.

In order to convince ourselves that this apparent convergence was

not simply the result of systematic round-off, we used the inverse

transformation 48), numerically retracing our steps from n = 10,101 to

n = 1,550. All coordinates agreed to 6 decimal fig~res, which pretty

well precludes the possibility that the observed convergence is a

numerical accident.

It should be noted, by the way, that no matter how close one is

to the fixed point, the quadratic terms in 51) cannot be ignored, for

according to 53), the linear terms by themselves will generate a sequence

of iterates which will all-lie on the ellipse of reference.

For the purpose of discussion, it is convenient

equation 51) so that the reference curve is a circle.

of the transformation can be written:

(;:)= A(:) A=(;: ‘:)

If we transform this with the matrix:

s= (! ;)

to transform

The linear part

55)

56)

we find:
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which corresponds to a

transform through S of

/+ ,,,)

rotation through an angle Q = cos-1 3
F“me

the complete mapping 50) has, then, the form:

x’
%

=3/4x+7y+~y2-6xy
e

Y’ = 4
- 7x+3/by+2y2+2~7 Xy

37)

58)

2. The Asymptotic Behavior of the Angle of the Radium Vector
under Iteration

The transformations with which we are concerned do not preserve

the ordinary measure (Lebesgae measure) of the space which is mapped

into itself. Moreover, they are not one-one. In some cases they shrink

a neighborhood of the fixed point into a proper part of itself and the

limiting image of such a region may consist of this poi”ntalone. Ob-

viously, an invariant measure, if it is to be constructed, would have to

be of Lebesgue-Stieltjes type and assign positive values, in some cases,

to sets consisting of single points.

One may be interested in the behavior of the angles (with a fixed

direction issuing from a fixed point) of the vectors Tl(=), where

~=(x1yx2x5); i= 1,2,... more generally in the behavior of

points:

the
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Si = Ti(~)

]Ti(;)[
%)

on the unit sphere. Something can be said about it even in cases where

T does not transform any bounded region into itself. Thus, for example,

if T is an arbitrary linear transformation of the n-dimensional Euclidean

space into itself, T(0) =0. Then the ergodic limit of the average of

Si exists. In other words, if C is an arbitrary “cone” of directions

in space, i.e., a sub-set of the unit sphere fC(s), its characteristic

function being:

fc(s) =0 if s~C; fc(s)=lifs6C

then for almost all s, the limit:

N
lim 1

E z
fc(Ti(s))

N =@
i=l

60)

exists. This follows for a general linear transformation, T, from the

well-known theorems giving, in fact, more precise information--in the

two extreme cases: If T is an orthogonal transformation we have the

Kronecker-Weyl theorem on equipartition; if T, considered as a matrix,

has all coefficients positive, the Perron-Frobenius theorem asserts

convergence to a unique direction. In the general case one obtains,

by considering a decomposition of the space into sub-regions where one

or the other behavior dominates, at least the existence of the ergodic

limit.
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Presumably, the t~eorem still holds true if T is a general homo-

geneous quadratic transformation of the n-dimensional space. ~

In our very special quadratic transformations of the plane, more

can be said: The transformation of the previous section possesses the

Kronecker-Weyl property: The angle described by the iterates of almost

every point covers the

uniformly.

We hope to show

formation Q, which has

circumference of the unit circle densely and

that if the linear part of a quadratic trans-

the origin as its fixed point, consists of a

rotation through an irrational angle, then the iterates of Q converge

to the origin provided one starts with points in a circle of sufficiently

small radius.

A detailed discussion of these matters will be given in a sub-

sequent report.
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x. FURIYiERGENERALIZATIONS

In view of the impracticability of studying all possible Binary

Reaction Systems for any N > 3, we thought it worthwhile to generalize

a few of our 3-variable systems to higher dimension by arbitrary but

fixed rules. One such generalization is mentioned in Section VII (see

1.5.j - ext - 1 and subsequent discussion). Another essentially

different way to generate “interesting” systems is to construct for any

given 3-variable transformation the corresponding “super-system.” This

is constructively defined as follows:

We introduce nine variables,

prescription:

‘1 = Yl+ Y*+ Y3

‘2 = y4+ y5+ y6

‘3 = Y7+ yg+ Y9

and substitute these in the original

transformations for the three triads

Yl) Yp> “ “ “ Y99 according to the

61)

transformation. We then have three

of variables yl+ y2+ y3j Y4+ Y5+ y69

Y7+ ya+Yy Consider, e.g., the system 1.2.e. The last line of the

transformation now reads:

Y++ Y~+Y; = 2(yl+ Y2+ y3)(y4+ y5+ y6)
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In order to convert this into 3

we could, for example, formally

Y1-Y 4-%

Y2 - Yp - ya

y3-y6Ny9

separate

identify

Correspondingly, on the right-hand side,

2YlY4-Y12

2Y2Y5-Y22

expressiOns for Y~j Y~9 Y~9

the variables modulo 3, i.e.,

62)

we could make the identification:

63)

2yr-#6+ 2Y3Y5-2Y2Y3

2Y3Y6-Y32

2y~y6+ 2Y3Y4- 2W3

2YLY5+ 2Y2Y4--2’YlY2

We can now write expressions for Y+j Y;, Y; so that, with these formal

identifications, the resulting sub-system will have the

original 3-variable system, i.e.,

Y;-Y; =Y12 +Y2 2 + 2y2y3-2YlY4 + 2Y2Y5

same form as the

+ 2y2y6 + 2y3y5

Y;wy; = Y32
+ 2yly3

‘2Y3Y6 + 2y~y6 + 2Y3Y4 64)

Y; -Y; = 2YlY2 --2YlY* + ‘2Y2Y4
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In tnis way we (arbitrarily) obtain equations for y+, y~, y; in

terms of the Y.’s. When this is done for each triad, a 9-dimensional
“J.

B.R.S. results.

In the present case, using the

(11) + (44) +2(47) + (22) + (55) +

(33) + (66) +2(69) +2(13) +2(46)

2(12) +2(45) +2(48) +2(57)

(77)+2(17) +(88) +2(28)+2(29)

symbolic notation of Table II:

2(58)+2(23) +2(56) +2(59) +2(68)

+ 2(49)+ 2(67)

+ 2(38)+ 2(89)

(99) +2(39) +2(79) +2(19) +2(37)

2(78) +2(18) i-2(27)

2(14)+2(25) +2(26) +2(35) (1.2.e - 6uper)

2(36) +2(16) +2(34)

2(15)+2(24)

As a second example, we quote the result of treating system 1.3.g

in the same manner:

(55) +2(25) +(88) +(66) +(99) +2(56) +2(45) I-2(78)+2(15) +2(24)

2(46)+2(79) +2(16) +2(34) +2(56) +2(89) +2(26) +2(35)

(44)+ (77)+2(14)

2(28)+2(58) +2(39) +2(69) +2(18) +2(48) +2(27) +2(57)

2(19)+2(37) +2(49) +2(67) +2(29) +2(38) +2(59) +2(68)

2(17)+2(47)

(22)+ (33)+2(12)

2(13)+2(23)

(11) (1.3.g - Super)
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When these transformation were iterated for randomly chosen initial

vectors, the sums:

‘1= Yl+ Y2+ Yy X2= Y4+ Y5+ Y6? X3=

reached, of c.wrse, as they should, the same

Y7+ Y(3+Y9

limiting configuration as

was observed in the original 3-variable systeW.. However, the actual

values of the individual yi varied with the initial configuration. The

results are given in Table VI.
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XI. PROPERTIES IN THE LARGE

1. Although it is, in general, possible to discuss the behavior

of points under iteration in the neighborhood of a fixed point, the

iteration behavior of such points over the whole domain (positive portion

of the hyperplane) can, at present, be treated only experimentally. In

what follows, we shall take the variables to be S, a, and the domain

to be the corresponding 45° triangle with unit base (see Section 1X.1

for a definition of this coordinate system).

As stated above, we have not found any general criteria for

determining which of several possible limiting behaviors will be realized

for a given 3-variable system, starting with a general point in the

triangle. On the basis of a rather small sample (-3 random initial

points for each system), it appears that, excluding boundary points,

the limiting behavior is independent of the initial point for the large

majority of systems. As shown in Table I, however, there are (at least)

6 systems in which this limiting behaviordepends on the initial point

(we exclude from consideration the “pathological” systems 11.1.d and

11.1.f; see the discussions under these entries in Table II). Two of

these, 1.2.m and 1.5.h, have been examined in greater detail. What was
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done was to look for boundaries which separate regions of different

limiting behavior. This was accomplished by programming the computing

machine to “search” the whole triangle in a systematic manner. On the

first pass a crude net was used (AS=ACZ= .05). Then, when the

boundaries had been approximately located, a more refined interval was

employed in the appropriate neighborhoods. For each trial point in the

triangle, sufficient iterations had to be performed to identify the

limiting behavior. Despite the apparent magnitude of the task (several

hundred trial points had to be followed for some 70 iterations each), a

complete search (first crude, then appropriately refined) takes only

about 15 minutes of computing time per system.(9) The results for the

two systems studied are shown in figures 2 and 3. In these, each

calculated boundary point is determined to within an absolute error

c .0025, i.e., to within l/h~ of the length of the base of the triangle.

In these figures, initial points lying in the region marked “OSC.” will

iterate to the appropriate boundary oscillation, while all points lying

outside these regions will converge under iteration to the i.f.p. The

boundaries appear to be complicated. We have not attempted to study

what happens to points actually lying on the boundary curves; for this

an analytical treatment is necessary.

19‘On the average, the machine will perform 50 iterations/see for a
3-variable Binary Reaction System. The systematic search of the
triangle is somewhat slower for various reasons connected with input-
output requirements.
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In a few simple cases it is possible to give.an analytical

treatment of such boundary regions. As an example, we cite the system

111.2.2.a. In the S,a coordinates (we use these to conform with our

treatment of the other systems; the argument can be carried out in the

original coordinates with equal ease) the transformation takes the form:

S!.2S .S2+322JKZS

a’ = 2X(1-S)

There are 3 n.fop.’s, namely,

(S=1/2, a=l/2), while the i.f.p. is

CZ=Oand S=a are clearly transformed

exists an invariant line:

s=%

65)

(S=0,GO), (S=1,a=O), and

(s=1/2, a=l/6). The boundaries

into themselves. In addition, there

All points lying on this line can easily be shown to iterate to the

i.f.p.--with the exception of S=CH), which is a non-attractive f.p.

This line is shown on the diagram below. The curve S=S* is the locus

of all points such that S’= S; its equation is:

s*=l- 4CX+A/(1-4CZ)2 + 12a2
2 66)
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o 1/2 1

It is easily shown that a point lying in the region below tne

line S=%, i.e., such that S > ~, remains in this region under iteration;

similarly for points lying above the line. Further, all points lying

to the left of the curve S** remain to the left under

can be further shown that points lying to the right of

situated at the corners of the triangle or on the line

iteration. It

S=S* and not

S=~ will

eventually cross the curve. Furthermore, in the neighborhood of the

i.f.p., the linear approximation to the transformation is (x~S-1/2,

Y sa-1/6):

x’ = l/3x - y

“Y’ =-1/3x + y

from which it can be deduced

67)

that the i.f.p. is attractive only along

the line x = 3Y” Finally, using the fact that for S c1/2, we always
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have cz’- CX> O and that correspondingly for S> 1/2, a’- a< O, it

can be shown that all points lying above the line S=~ will iterate to

S=cz=l/2,while all points below the line will iterate to S=l, Q=O.

The reason

that the boundary

it may be helpful

iteration) of the

why this system can be treated so simply is, of course,

curves are explicitly known. When this is not tne case,

to have before one a picture of the mapping (single

entire

and S are stationary. A

4, 5, and 6.

2. There

a fixed point or

or, in terms

triangle, as well as the curves along which a

few

is one case

to a finite

interesting examples are given in figures

2=
‘1 + 2X1X2

2=
‘2 + 2X2X3

=
’32 + 2X1X3

which does not appear

oscillation. This is

of the coordinates S,a:

s’ =22+s2-p2

Q!’= 2CI(1-S)

to converge eitker to

the system 111.2.3.a:

68)

69)

The situation is illustrated in figure 7. The i.f.p. is non-

attractive and the 3 corners of the triangle are attractive only along

the boundaries in a clockwise direction. Under iteration, points will

spiral out, approaching arbitrarily close to the boundaries but, e.g.,
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as the transf~rmationa’= Ecz(l-S)shows (for

point inside the triangle can ever reach the

point will continue to spiral indefinitely.

the bottom

boundary.

Numerically, a spurious convergence was observed

boundary), no

Thus a general

owing to the

fact that the several random initial points chosen rapidly iterated to

-8
within a distance less than 10 from one or another boundary line.

If one transforms the triangle into the unit circle in an appro-

priate manner, the situation can be viewed as follows: The center is a

non-attractive fixed point, and all points lying in the circle spiral

outwards towards the circumference. On the circumference itself, there

& 4X
are 3 fixed points located, say, at 0 = O, —g)~) which in turn define

3 arcs. Any point lying on one of these arcs will move under iteration

in a clockwise direction, ultimately converging to the fixed point

which constitutes the right-hand boundary of tk.earc in question.

Interior points, however, can never reach the boundary. In general, the

sequence of iterates of any interior point (excluding the center) does

not converge.

3* We have not studied in detail the rate of approach to the

limiting configuration. In the neighborhood of a fixed point, this rate

is usually easy to obtain, but for oscillating configurations the algebra

is more difficult. For most of the cases studied, convergence (to 8

decimal places) was either attained within 100 iterations (some were much

faster) or else not for many thousands of iterations. We shall not
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discuss this further except to remark that the path of approach to a

fixed point may depend very critically on the initial point. As an

example, we refer the reader to figure 8. For this transformation, two

of the corners of the triangle are non-attractive fixed points; initial

points in their neighborhoods iterate smoothly to tne i.f.p. In contrast,

points in the neighborhood of the origin iterate to the i.f.p. in an

oscillatory manner; the existence of a limiting line through the i.f.p.

is clearly evident.
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XII. CONNECTION WITH ORDINARY DIFFERENTIAL EQUATIONS

No doubt it will have occurred to the reader that Binary Reaction

Systems and their extensions have an obvious connection with systems of

ordinary differential equations. Consider, for instance, the system of

differential equations:

dxl
— = -xl+ fl(xl. . ● XN)
dt

dx2
— = -X2+ f (xdt 21””” ‘N)

.

.

.

dxN

%
= -xN+ fN(xl. . . XN)

where the fi(xl. . . xN) are

variables. A straightforward

system is:

homogeneous quadratic functions of the

finite difference approximation to the

70)
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(n+l) =
‘1

.

.

.

xN(n+l) =

If we now restrict the

(xl+ . . . + XN)2, such

the terms that occur in

above set of difference

(1 - At)xl
(n)

+ At f;n)

71)

(1 - At)xN
(n)

+ At ,~n)

fi to be disjoint partial sums of the terms in

that
t

fi= (xl+... + xN)2, i.e., just

i=l
our binary reaction transformation, then the

equations goes over into a Binary Reaction System

for At = 1. With this restriction on the fi, the system of difference

equations has the property z
x (n)= 1 for all n if z

x (0)= ~,
i i

independent of the time-step A t. It should be observed that for

At> O, the system has the same fixed points as the corresponding

Binary Reaction System.

As a very simple example, consider the system:

2 2
‘;=xl ‘X2

‘;= %X2

Any interior point (x,

72)with i.f.p. xl= x2= 1/2,

and b.f.p. xl= 1, x2= O.

# 1, O) will iterate to the i.f.p. The
J.

corresponding differential equation is (eliminating X2):
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of which the solution is:

74)

Clearly, as t+m, xl+ 1/2, xl‘0) +1, 1/2. Thus, in this

case, the asymptotic behavior of the differential equation is the same

as that of the corresponding Binary Reaction System. This, however, is

not generally so. For example, the transformation 1.5.d (see Table II)

possesses a boundary double point which is attained for a certain set of

initial points. The corresponding differential equation system, when

-6integrated according to the finite difference scheme 71) with At =2 ,

converged to the n.f.p. xl= 1 regardless of the initial point.

In such cases the Binary Reaction System, viewed as a finite

difference approximation to the corresponding system of differential

equations, is clearly an “unstable” scheme. We hope to discuss the

point further in a subsequent report.
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EXPLANATION OF GRAPHS

1. Figure 1 is a plot of successive iterates of a point under

the transformation equation 53) of the text. The outer curve shows the

iterates from cycle n = 1550 (point il) to cycle n = 1570 (point fl);

the next curve goes from n = 10,101 (point i2) to n = 10,114 (point f2),

while tineinnermost curve goes from n = 75,001 (point i3) to n = 75,011

(point f3).

2. Figures 2 and 3 show the (experimentally determined) boundaries

between two types of limiting behaviors for two different Binary Reaction

Systems (see discussion in Section XI). In terms of the S,czcoordinates,

these transformations are:

1.2.m (Figure 2):

s’ = ~+3s2-c?+=
2 - 2s

S2
a’ = - W*

2
-~+2a

1.5.h (Figure 3):

s’ =
l+CY.2-3S2

2
- a+s + ~

l+s?&
c%’=

2
+U -s - as
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In each case, points in the inner region (marked “CONV.”) will iterate to

the fixed point, while points outside this region will reach an oscilla-

tory final state (in 1.5.h, all three outer regions are oscillatory,

though only one is so marked).

3“ Figures 4, 5, and 6. These figures

explicitly for three different Binary Reaction

1.2.j (Figure 4):

S’=1 JW+4C?+2CYS

give the S,czmapping

Systems:

(cf. equation 47) of the text)
a’ =20S

1.5.h (Figure 5):

See 2. above.

111.2.l.a (Figure 6):

s’ =s+~-bs

a’=S -a+~2-S2

In Figures 4 and 5, the numerically labelled lines are the transforms

of lines of constant c!;e.g., in 1.5.h the curve labelled .25 is the

transform of the horizontal line a = .25. The curves labelled cx’=a

and S’= S are lines of constant a and constant S, respectively.

Figure 6 is plotted in a 600, 30° reference triangle, i.e., in

terms of the variables S and t = ~3 o!. The labelled curves are the

transforms of lines of constant t, and the arrows indicate the order of

the transformed points as the relevant lines of constant t are traversed

from left to right (direction of increasing S). Note the change of
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direction for t> %
. (The vertical line with two arrows labelled

1/6 is the transform of a = 1/6 or t = $
3. This line is doubly

covered, first upwards, then downwards, as S increases.)

4. Figure 7 illustrates the “non-convergent”case. See Section

XI, equation 69), and the accompanying text.
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5- Figure 8 illustrates different modes of convergence to a

fixed point. See part 3 of Section XI for discussion.
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1

n.f.p.

1.2.b

1.2.C

1.2.h

1.2.i

1.2.1

I.j.a

1.3.c

I.j.d

1.4.a

1.4.C

1.5.a

I.s.b

1.5.c

I.s.d

1.5.e

11.1.b

II.2.a

II.2.C

II.2.d

11.2.f

11.s.a

11.j.b

11.1.b

TABLEI

SUMMARYOFCONVERGENCEBEHAVIOROF TRREE-VARIABLE
BINARYREACTIONSYSTEMS

2

b.f.p

I.1.a

1.1.b

1.2.d

1.2.f

1.2.g

I.s.b

1.4.g

1.4.h

1.6.a

II.1.a

II.2.e

III.1.a

3
I.f.p.

I.l.c

1.2.a

1.2.j

1.2.k

1.2.0

I.s.e

I.s.f

I.s.h

1.4.b

1.4.f

1.4.i

1.5.f

1.5.n

1.5.0

1.6.b

1.6.C

II.1.d

II.2.b

II.2.i

11.s.d

III.1.C

111.1.d

III.l.e

III.1.g

III.1.h

III.1.i

III.2.1.a

III.2.1.h

III.2.l.e

III.2.2.C

111.2.2.e

4

b.d.p

1.2.e

1.2.n

1.2.q

1.2.r

1.3.i

1.4.d

1.4.e

1.5.g

1.5.i

1.5.k

I.s.m

II.2.g

II.2.h

11.3.C

III.2.2

Note: In addition,we have the following:

5

b.t.p.

1.5.J
1.5.r

III.2.3.C

111.2.3.f

6

i.d.p.

1.5.1

1.5.P

11.1.f

III.1.f

Mixed

Behavior

1.2.m(j,4)

1.2.p(j,4)

I.f.h(s,s)

1.s.q(l,4)

[11.2.2.a

(2different
values of 1)

HI .2.3.b(4,1

●

1.3.g i.t.p.

III.2.3.a non-convergent
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INTRODUCTION TO TABLE II

This table summarizes the properties of all 97 Binary Reaction

Systems in 3 variables. The notation is explained in Section IV of the

text. For a few systems, the behavior of arbitrary vectors under itera-

tion can be predicted theoretically owing to the fact that the system

reduces to a difference equation in a single variable (e.g., I.1.b,

1.2.q, etc.).
(lo)

We have not thought it worthwhile to note these instances

explicitly; anyone using the table will immediately discover them for

himself.

For the 3-variable case, the coordinates of all fixed points could

be written explicitly in terms of radicals, since the f.p. equation is

at most of kth degree. There are many interesting relationships between

the roots of the various f.p. equations.

relationships systematically, although it

standard tools (cf. L. E. Dickson(11))0

We have not investigated these

could easily be done using

(10
‘In some other cases, one may observe that one of the variables will
obviously iterate to zero, in which case the limiting behavior is also
evident.

(11)
L. E. Dickson,
Chicago, 1930.

Modern Algebraic Theories. Chapter II, Sanborn,
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TABLE II

THREE-VARIABLE BINARY REACTTON SYSTEMS

I.1.a

(11) + (22) + (33)

2(1.2) + 2(13)

2(23) }

no i.f.p.

m + b.f.p.

I.1.b

(11) + (22) + (33)

2(12) + 2(23)

2(13) 1
no i.f.p.

m + b.f.p. (x3= o)

I.l.c

(11) + (22) + (33)

2(13)+2(23)

2(12) }

n.f.p.

b.f.p.

degenerate

n.f.p.

2 b.f.p.’s

doubly degenerate

n.f.p.

b.d.p.

not degenerate

i.f.p. given by (x = x )
3

8x3.2a2+16x-3=o
‘1 = .34116390

1
or (y=2xl)

‘2
= .39162172

1

i.f.p.

3y+y-l=o
‘3

= .26721438

m + i.f.p.
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TABLE II (cont.)

1.2.a

(11) + (22) +2(12)

1

n.f.p.

(33) +2(23) degenerate

2(13) J

i.f.p. given by (x = X2)

X2+X -1/4=0

m ~ i.f.p.

‘1 = 1/2

b-l
‘2

=— = .20710678
2

}

i.f.p.

ti
(cf. 1.4.e)
(cf. 111.1.g)-—

‘3 = 1 2 = “29289322

1.2.b

(11) + (22)+2(12)7

(33) + 2(13)

)

n.f.p.

degenerate
2(23)

no i.f.p.

m ~ n.f.p.

1.2.c

(11) +(22) +2(13)

)

n.f.p.
(33) +2(23) not degenerate

2(12) J

no i.f.p.

m ~ n.f.p.
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TABLE II (cont.)

1.2.d

(11) + (22) +2(13)

1

n.f.p.
(33) +2(E) b.f.p.

2(23) J degenerate

no i.f.p.

m ~ b.f.p.

1.2.e

(II) +(22) +2(23)1 n.f.p.

(33) +2(13)

2(12)

no i.f.p.

one coordinate of

4x3 - 4X2 + 4X

x = .31944847

m + b.d.p.

1.2.f

Jb.d.p. (see below)

not degenerate

b.d.p (x = xl) given by

-1X()
‘1 = .56519772,Xl = .31944846

= o,

1

= .68055154 b.d.p.‘2 ‘2

‘3
= .4A80a?8, X3 =0

(11) + (22) + 2(23)

1

n.f.p.

(33) + z(~) b.f.p.

2(13) J degenerate

no i.f.p.

m+ b.f.p.
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TABLE II (cont.)

1.2.g

(11) +(33) +2(12)

1

2 n.f.p.’s
(22) +2(23)

b.f.p.

2( 13) J doubly degenerate

no i.f.p.

m ~ b.f.p.

1.2.h

(11) +(33) +2(12)

\

2 n.f.p.’s
(22) +2(13)

degenerate

2(23) J
no i.f.p.

m ~ n.f.p. (x~= 1)

1.2.i

(II) + (33) +2(13)

1

‘1
= 1/4

2 n.f.p.’s
(22) +2(23)

degenerate ‘2
= 1/2

2(12)
‘3

= 1/4 1

m ~ n.f.p. (xl= 1)

1.2.j

(11) + (33) +2(13)

1 ‘1=1/42 n.f.p.’s
(22) +2(12)

degenerate ‘2
= 1/2

2(23)
‘3

= 1/4 }
m+ i.fopo (See Section IX.l.of text for discussion)

i.f.p.

i.f.p.
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TABLE II (cont.)

Io2.k

(11)+(33) +2(23)~

(22) +2(13)

1

2 n.f.p.’s

not degenerate
2(U)

i.f.p. given by (x = xl) =?% = .41143783]
‘1

8X2+4X-3=0
‘2

‘= .32287566

J

i.f.p.

m ~ i.f.p.
‘3

= .26568651

1.2.1

(u) + (33) + 2(23)

1

2 nof.po’s

(22) +2(12) b.f.p.

2(13) doubly degenerate

no i.f.p.

m ~ n.f.p. (xa= 1)

1.2.m

(22) + (33) +2(12)

1
‘1=1/2

b.d.p.
(II) +2(23)

degenerate ‘2 ‘*
= “35355339

1

i.f.p.
(cf. I.1.b)

2(13)
4

=2- 2 = .l~4~~l (cf. 111.1.d)
‘3

m s i.f.p. with initial vectors:

(o) = 1/3 (o)
‘1 ‘1 = .10066270

(o)
= 1/3 and (o)

‘2 ‘2
= .17982822

(o)
= 1/3 (o)

‘3 ‘3
= .71950908
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TABLE II (cont.)

1.2.m (cont.)

m ~ b.d.p. with initial vector: (See Section XI for discussion)

(o)
‘1 = .35613727

(o)
‘2

= .62067802

(o)

‘3
= .02318471

1.2.n

(22) + (33) + 2(12))

(n) + 2(13)

2(23) }

b.d.p.

degenerate

The only f.p. is the b.f.p., which is the i.f.p. of the 2-variable

systern:

{

(22) + 2(12)
System xl = ~ = .61803399, i.e.,

s: (11)
X2 = ~ = .38196601

1
(X3= o) J

This f.p. is easily shown not to be attractive. And, experimentally:

m ~ b.d.p.
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TABLE II (cont.)

1.2.0

(22) + (33) +2(13)

\

b.d.p.
(11) +2(23)

not degenerate

2(12) J
i.f.p. given by (x = Xl):

4X4 + 8X3 -5X2+3X-1=0

m ~ i.f.pe

1.2.p

(22) + (33) +2(13)

1

b.f.p. (cf. 1.2.n)

(11) +2(12) b.d.p.

2(23) degenerate

‘1 = .39624265

‘2 = .33682695

1

i.f.p.

‘3
= .26693040

i.f.p. given by (x = xl): Xl = ~ = .~602540

X2+X
1/2 = o x2 = 1/2 1i.f.p.

-b
(cf. 1.3.h)

‘3 = 1 2 = “13397460 (cf. 11.2.b)

m ~i.f.p. with initial vectors:

(o) = 1/3 (o) xl(o)
‘1 ‘1 ‘& = .35613727

X2(0) = 1/3 and (o) X2(0)
‘2 ‘%-

and = .62067802

(o)
= 1/3 (o) (o)

‘3 ‘3 ‘i% ‘3
= .023~847~

m ~ b.d.p. with initial vector:
/

(o)
‘1

= .04815165

(o)
‘2

= .21990982

(o)

‘3
= .73193853
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TABLE II (cont.)

1.2.q

(22) + (33) +2(23)

\

b.d.p.
(11) +2(13)

not degenerate

2(12) J

i.f.p. given by (x = xl)

X2 -3X+1=0

m ~ b.d.p.

X,=& = .38196601

vf32-1

1‘2= T = “3503729’ ‘“’”P”

‘3
= .26766108

1.2.r

}

(22) + (33) + 2(23) ~.fopo (cf. ~ ~ ~,
. .

(11) + 2(12) b.d.p.

2(13) degenerate

no i.f.p.

m ~ b.d.p.

1.3.a

(11) + (22) + 2(W)

1

2 n.f.p.’s
2(13)+2(23)

degenerate

(33) J

J

no i.f.p.

m+ n.f.p. (Xl=l)
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TABLE II (cont.)

Io3.b

(.11)+ (22) +2(13)
1 2 n.fep.’s

2(12) + 2(23)

(33)

}
b.f.p.

I doubly degenerate

no i.f.po

m ~ b.f.p.

1.3.c

(11) + (22) +2(23)

}

2 U.f.p.’s

2(12) +2(13) bofop.

(33)
degenerate

no i.f.p.

m+ n.f.p. (xl=l)

1.3.d

(11) +(33) +2(U)

1

n.f.p.
2(13)+ 2(23) not degenerate

(22) J

no i.f.p.

m > n.f.p.

91



TABLE II (cont.)

1.3.e

(11) + (33) +2(13)

}

‘1 = l/4
n.f.p.

2(12) +2(23)
degenerate ‘2

= 1/2
1

i.f.po

(22) J X3 = 1/4 J
i.fopo exists

m ~ i.fop.

1.3.f

(n) +(33) +2(23)

}

n.f.p.
2(I2) +2(13)

not degenerate

(22)

i.f.p. givenby (x = X2):
‘1 = .34444609 )

2X3+4X2.1=0
‘2 = .45160596

}
i.f.p.

m ~ i.f.p.
‘3

= .20394795 J

1.3.g

(22) + (33) + 2(12)

1

‘1 = .45823825
b.d.p.

2(13) +2(23)
not degenerate ‘2

= .33177946
)

i.f.p.

(11) J
‘3 =

.20998229 j

i.f.p. given by (x = xl):

2x
4

- 3X2 - x + 1=0
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TABLE II (cont.)

1.3.g (cont.)

m ~ interior triple point:

Xl(n+3)=X ‘n)= .7392&~9, X ‘n+l)= .08071790,X ‘n+2)= 49780563
1 1

.

x2(n+3)= ~l(n)= .01294586,X2
(n+l)=

.37280086,X2
(n+2)=

2

1

.49567899 i.t.p.

(n+3)= (n)= .24781045,X3
(n+l) (n+2)

‘3 ‘3
= .54648u4, X3 = .00651538

1.3.h

(22) + (33) +2(13)

\

b.f.p. (cf. 1.2.n)

2(12)+2(23) b.d.p.

(11) J
degenerate

i.f.p. givenby (x =xl): xl=~= .36602540

X2+X
1/2 =0

‘2
= 1/2

1

i.fop.

.%= .13397460
(cf. 1.2.p)

m ~ i.f.p.
‘3=1

1.3.i

(22) + (33) +2(23)

1

b.d.p.
2(12) +2(13)

not degenerate

(11)

*=.38196601 ~i.f.p.given by (x = xl):
‘1 =

X2
-3X+1=0

‘2 =
2~5- 4 = .47213596

1

i.f.p.

m ~ b.d.p. x3= ~=o~458~803 ‘cf. 1“50f)
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TABLE II (cont.)

}

(11) +2(12) +2(13) zn,f.pe,~

(22) +(33) b.f.p.

2(23)
doubly degenerate

no i.f.po

m ~ n.f.p. (xl= 1)

1.4.b

(11) + 2(12) + 2(23)

}

2 n.f.p.’s
(22) + (33) degenerate

2(13)

i.f.p.given by (x = X2): ‘1
= 1/2

)

2X2 - 2x+ l/4=0 +
2- 2

‘2 =
= .M44661

)

i.f.p.

%
2

(cf. 1.2.m)

m ~ i.f.p.
‘3 =

= “35355339

1.4.c

(n) +2(13) +2(23)

1

2 U.f.p.’s

(22) +(33) not degenerate

2(12) J

no i.f.p.

m+ n.f.p. (xl= 1)
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TABLE 11 (cont.)

1.4.d

}

(22) +2(12) +2(13) ~.fope (cf. ~020n)

(11) +(33) b.d.p.

2(23)
degenerate

no i.f.p.

m ~ b.d.p.

1.4.e

(22) +2(12) +2(23) b-f-p. ~cfe~02en)
1

(11) +(33) }
b.d.p.

2(13) J
degenerate

i.f.p.given by (x = X2): ‘1
= 1/2

1
X2

-2x+ l/2=o “ &
‘2 =1-2

= .29289322

)

i.fop.

x3= @ = .20~~06~8
(cf. 1.2.a)

m ~ b.d.p. 2

1.4.f

(22) +2(13) +2(23)

}

b.d.p.
(11) +(33) not degenerate

2(12)

i.f.p. given by (x = X2)
‘1

= .46164837

4X4 - 12X3+X2.-3X+1=0 X2= .27991085
\

i.f.p.

m ~ i.f.p.
‘3

= .25844078J
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TABLE II (cont.)

1.4.g

(33) +2(X2) +2(13) ~.f.p.

(11) +(22)

1

b.f.p.

2(23) degenerate

no i.f.pe

m ~ b.f.p.

I.&oh

}

(33) +2(12) ‘2(23) n.f.p.

(11) +(22) b.f.p.

2(13) degenerate

no i.f.po

m ~ b. f.p.

1.4.i

(33) +2(13) +2(23)
1 n.f.p.

(11) +(22) rnot degenerate

2(12) J

i.f.p.givenby (x = x )
3 ‘1 = .4>25$%

32x - 10X2 +14X.3=0
‘2 = .28737153

1
i.f.p.

m+ i.f.p.
‘3 =

.26009213J
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TABLE II (cont.)

1.5.a

(11) +2(12) +2(13)
) 3 n.f.p.’s

(22) +2(23) rtriply degenerate

(33) J

no i.f.p.

m ~ n.f.p.(x~= 1)

1.5.b

(11) +2(12) +2(13) n.f.p.

(33) +2(23)

}

b.f.p. (cf. 1.2.n)

b.d.p.
(22) degenerate

no i.f.p.

m + n.f.p.

1.5.c

(11) +2(12) +2(23)

\

3 n.f.p.’s
(22) +2(13) degenerate

(33) J

no i.f.p.

m+ n.f.p. (xl=l)
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TABLE II (cont.)

1.5.d

}

(11) +2(12) +2(23) nof.po

(33) +2(13) b.d.p. (see below)

(22)
not degenerate

no i.f.p. In addition to the “trivial” b.d.p. (0,1,0), (0,0,1),

there is a b.d.p. which is a f.p. of the transformation:

2(2-x3)2, viz.:
‘; = ‘3

X,=ti-l xl=-
2’

X2=L
‘2=0 ‘ 2 1

b.d.p.

3%5
‘3= 2 ‘ ‘3=0

J
This is not an

initial vector

vector ~ the

attractive f.p. If x (o)
=O,x (o) 3- ti5 the

2 3 < 2>

(o) ‘o)> ~~, the initial+ xl= l.If x2 =O,x
3

trivial b.d.p. This behavior has been verified

numerically.

{n) + 2(13) + 2(23)

1

3 n.f.p.’s
(22) + 2(12)

doubly degenerate

(33) J
no i.f.p.

m ~ n.f.p. (X2= 1)
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TABLE II (cont.)

1.5.f

}

(u.)+2(13) +2(23) nof,p,

(33)+2(1.2) b.d.p.

(22)
not degenerate

i.f.p. given by (x = X2):

}

X1=2~5 - 4 = .47213596

X2 -3X+1=0 x2= ~ =.38196601 i.f.p.

.7-3 V5
(cf. 1.3.i)

m ~ i.f.p.
‘3 2

= .14589803

1
(22) +2(12) +2(13) n.f.p.

(u) +2(23)
b.f.p. (cf. 1.2.n)

b.d.p.
(33) degenerate

no i.f.p.

m + b.d.p.

1.5.h

(22) +2(u2) +2(13)

}

b.t.p.
(33)+2(23) not degenerate

(11)

i.f.p. given by (x = xl):
‘1

= .53208889

X3 2-1=0+ 3x
‘2

= .18479253
\

i.f.pe

‘3 =
.28311858J
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TABLE 11 (cont.)

I.s.h (cont.)

m ~ i.f.p. with initial vectors:

(o)
= 1/3

(o)
‘1 ‘1 = .08662751

(o) = 1/3
(o)

‘2
and ‘2 = .32501609

(o)
= 1/3

(o)
‘3 ‘3

= .58835640

m > b.t.p. with initial vector:

xl(o)
= .02476836

(o)
‘2

= .01004474 (See Section XI for discussion.)

(o)

‘3
= .96518690

1.5.i

(22) + 2(12) + 2(23) n.f.p.

(H) + 2(13)

1

b.f.p. (cf.1.2.n)

b.d.p.
(33) degenerate

no i.f.p.

m ~ b.d.p.

1.5.j

(22) + 2(12) + 2(23)

\

b.t.p.

(33)+ 2(13) not degenerate

(22) J
i.f.p. given by (x = xl): ‘1

= .48402830

432
x + 2x +x +x - 1 =0 ‘2

= .28168830

)

i.f.p.

m ~ b.t.p. ‘3 = .23428340
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TABLE II (cont.)

1.5.k

(22) +2(13) +2(23)

1

n.f.p.

(11) +2(12)
b.f.p. (cf.1.2.n)

b.d.p.
(33) degenerate

no i.f.p.

m ~ b.d.p.

1.5.1

(22) +2(13) +2(23)

1 ‘1=.44504187
b.t.po

(33)+ 2(12) not degenerate ‘2 = 935689587

1

i.f.p.
(cf. 1.5.n for

(11)
‘3

= .19806226 valueof X2)
(cf.1.5.r)

i.f.p. given by (x = xl):

X3 - X2 -2X+1=0

m ~ i.d.p.:

(n+2) = (n)
= .67046846,Xl

(n+l)
‘1 ‘1

= .13146927

(n+2)
= xJn)

(n+l)= .31224737,x2
‘2

= .41900277

)

i.d.p.

(n+2)
= x$) = .01728417,X3

(n+l)

‘3
= .44952796

1.5.m

(33)+ 2(E) + 2(13)1 n.f.p.

(22) + 2(23)

1

b.d.p.

b.f.p. (cf. 1.2.n)
(11)

degenerate

no i.f.p.

m+ b.d..p.
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TABLE II (cont.)

1.5.n

(33)+2(W) +2(13))

}

b.t.p.
(11) +2(23) not

(22) J

i.f.p. given by (x = X2)

X3 2.4X+1=0+ 3x

m ~ i.f.p.

1.5.0

degenerate

‘1
= .51572947

‘2
= .35689587

‘3
= .12737466

}

i.f.p.
(cf. 1.5.1for
valueof X2)

(33)+ 2(E) + 2(23)

1n.f.p.

(22) + 2(13) b.d.p.

(11) not degenerate

i.f.p. given by (x = xl)
‘1 = .47283391~

X3+4X2-1=0
‘2 = .30359418

J

i.f.p.

m ~ i.f.p.
‘3

= .223>7191

(33)+ 2(12) + 2(23)~

)
b.t.p.

(11) + 2(13)
not degenerate

(22)

i.f.p. given by (x =X2)
‘1

= .52645706

4x- 2X3+X?.3X+1=0
‘2 = .3>061327

\
i.f.p.

‘3
= .E292967 J

102



TABLE II (cont.)

1.5.P (cont.)

m ~ i.d.p.:

(n+2)= (n+l)(n)= .41717428,xl
‘1 ‘1 = .49907610

(n+2)=x (n)= .5_@18709,xa(n+l)
‘2 2 = .21127856

1

i.d.p.

(n+2)= (n) (n+l)=.28g64534
‘3 ‘3

= .04463863,X5

1.5.q

(33)+2(13) +2(23)] n.f.p.

(22) -t2(12)

)

b.f.p. (cf. 1.2.n)

b.d.p.
(11)

degenerate

no i.f.p.

m ~ n.f.p. with initial vectors:

(d= ~/3 (o)
‘1 ‘1

= .28491108

M= ~/~ (0)= .47627166‘2 and ‘2
k)= ~/3 (o)

‘3 ‘3
= .23881726

m ~ b.d.p. with initial vector:

(o)
‘1 = .4$34693

(0)
‘2

= .16692265

(o)

‘3
= .39673042

1.5.r

(33)+ 2(13) + 2(23)

}

b.t.p.
(11) + 2(W)

not degenerate

(22)
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TABLE II (cont.)

1.5.r (cont.)

i.f.p. given by (x = X2) ‘1
= .35689587

1
X3 _ X2 -2X+1=0 ‘2 = .44504187

~

i.f.p.
(cf. 1.5.1)

m ~ b.t.p.
‘3

= .19806226

1.6.a

2(12) + 2(13)+ 2(23)

1

2 n.f.p.’s

(11)+ (22) b.f.p.

(33)
degenerate

no i.f.p.

m ~ b.f.p.

1.6.b

2(12) +2(13) +2(23)
1 b.d.p.

(11)+ (33) r not degenerate

(22) J

i.f.p.givenby (x =X2) ‘1
= .56311573~

2x4+a3-xL3x+l.o
‘2 = .32878482

}
i.f.p.

m + i.f.p.
‘3 =

.10809945J

1.6.C

2(12) +2(13) +2(23)

}

n.f.p.

(22) + (33) not degenerate

(11)
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TABLE II (cont.)

1.6.c(cont.)

i.f.p.givenby (x = xl)

2X3+2X2.1=0

m ~ i.f.p.

11.1.a

\

(11)+(22) + (33)+2(12) ~ofmp.

2(23) b.f.p.

2(13) J
no i.f.p.

m ~ b.f.p.

11.1.b

(11) +(22) + (33) +2(13)

2(23)

2(12) }

no i.f.p.

m ~ n.f.p.

11.1.d

(11) + (22) +(33) +2(23)

2(12)

2(13) }

‘1 = .36519772

‘2 = .11535X2

1

i.f.p.

‘3
= .31944846

doubly degenerate

n.f.p.

degenerate

n.f.p.

2 b.f.p.’s

doubly degenerate

105



TABLE II (cont.)

11.1.d (cont.) (o)
% ‘2

There is a continuum of i.f.p.’s, since ~ =~ ~=””

Tne i.f.p. corresponding to this a is

‘1 = 1/2

‘2=&

1

i.f.p.

‘3=&

Note that if we write X2+ X3= Y2, Xl= Ylj then the systemtakes

the form:

Y; = ylp + y22
which, for a general point,

Y; = 2YLY2 + yl= y2= 1/2

m - appropriate iof.p”

11.1.f

(I-1)+(22) + (33)+2(23)

}

n.f.p.
2(13) not degenerate

2(1.2)

There is a continuum of i.d.p.’s owing to the fact,that

X2(0)
‘; ‘2
p,=y” Thus, if

m
= a, the i.d.p. is given by

33 ‘3
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TABLE II (cont.)

11.1.f (cont.)

(n+2) = (n) =1/2, (n+l)
‘1 ‘1 ‘1

= 1/2

(n+2)
= x2(n)

(n+l)
‘2 =“*J , X2 ‘z%

}

i.d.p.
(cf. 11.1.d)

(n+2) = (n) = a (n+l)

‘3 ‘3 ~’ ‘3 ‘&

This

m+

11.2.a

(11)

(33)

systemreducesto the same 2-variablesystemas does 11.1.c.

appropriatei.d.p.

+ (22)+ 2(12)+ 2(13)

1
n.f.p.

Jdegenerate
2(23)

no i.f.p.

m ~ n.f.p.

11.2.b

(11)+ (22)+ 2(12)+ 2(23)

1n.f.p.
(33) degenerate

2(13)

i.f.p. given by (x = x ) “
3 ‘1

= 1/2

x2+x-1/2=o
X2 . ~3 -1 . .36602340

2

}

i.f.p.

- U.
(cf. 1.2.P)

m ~ i.f.p.
‘3 ‘1 2 = “13397460
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TABLE II (cont.)

11.2*C

(11) + (22) +2(13) +2(23)

(33)

2(12) }

no i.f.p.

m + n.f.p.

11.2.d

(11)+(33) +2(12) +2(13)

(22)

2(23) 1

no i.f.p.

m ~ n.f.p.(xl= 1)

11.2.e

(11)+ (33)+ 2(12)+ 2(23)

(22)

2(13) }

no i.f.po

m ~ b.f.p.

n.f.p.

not degenerate

2 n.f.p.’s

doubly degenerate

2 n.f.p.’s

b.f.p.

doubly degenerate
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TABM II (cent.)

11.2.f

(11)+ (33)+ 2(13)+ 2(23)

(22)

}

2 n.f.p.’s

degenerate
2(12)

no i.f.p.

m ~ n.f.p. (xl= 1)

11.2.g

1
(22) +(33) +2(3-2) ‘2(13) bfp (cf 12n)

. . . . . .
(11) b.d.p.

2(23) J degenerate

no iof.p.

m ~ b.d.p.

11.2.h

}

(22)+ (33)+2(12) +2(23) bfp (cf 12n)
. . . .0.

(11) b.d.p.

2(13) degenerate
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i.f.p. exists:
‘1 = 1/2

m + b.d.p.

‘2 = l/4

1

i.f.p.

‘3
= l/4



TABLE II (cont.)

11.2.i

(22) + (33)+2(13) +2(23)

}

b.d.p.
(11) not degenerate

2(12)

i.f.p. exists: ‘1
= 1/2

= 1/4

!

i.f.p.
m ~ i.f.p. ‘2 (cf. 11.2.h)

‘3
= 1/4

11.3.a

1(11) +2(12) +2(13) +2(23)
3 n.f.p.’s

(22) doubly degenerate

(33) J

no i.f.p.

m+ n.f.p. (Xl=l)

11.3.b

}

(11) +2(1.2) +2(13) +2(23) nof.po

(33) b.d.p.

(22)
not degenerate

no i.f.p.

m ~ n.f.p.
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TABLE 11 (cont.)

11.3.C

[22) +2(12) +2(13) +2(23)1 n.f.p.

(11)

(33) J
b.f.p. (cf. 1.2.n)

b.d.p.

degenerate

no i.f.p.

m ~ b.d.p.

11.3.d

(22) +

(33)

(11)

i.f.p.

# .

.

2(12) +2(13) +2(23)
1 b.t.p.

rnot degenerate

given by (x = xl)

2 +2X-1=0

or (unseduced):

42
x +x +x - 1 = O (cf. Eq. 21) of Text)

or(y=x)
3

Y3+3Y2+2Y-1 =0

m ~ ief.p.

111.1.a

(11) + (22)

1

2 n.f.p.’s

2(12) +2(23) b.f.p.

‘1 = .56984029

‘2 = .10544175

}

i.f.p.

‘3
= .3247L796

2(13) + (33) J doubly degenerate

no i.f.p.
m+ b.f.p.
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TABLE II (cont.)

111.1.b

(11) + (22)
1

2 n.f.p.’s

2(I2) +2(13) ) b.f.p.

2(23)+ (33) J ‘egenerate

no i.f.p.

m ~ n.f.p.(X3=1)

111.1.c

(11) + (22)

1

2 n.f.p.’s
2(13)+2(23) not degenerate

2(12)+ (33)

i.f.p. exists:
‘1

= 1/4

m ~ i.f.p.
%
3

‘2 =
= .43301270

}

i.f.po

-i
‘3 = v

= .31698730

111.1.d

(11)+ (33)

}

n.f.p.

2(12)+2(23) b.f.p.

2(13)+ (22) ‘degenerate

i.f.p. exists: 42- 2
‘1 =

= .M644661
1

m + i.f.p.
‘2

= 1/2

1

i.f.p.

%
2

(cf. 1.2.m)

‘3 =
= .35355339
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TABLE H (cont.)

111.I.e

(11) +(33)
1 n.f.p.

2(W) + 2(13)

J

not degenerate

2(23) + (22)

i.f.p. given by (x = xl)

4X3-8X2+6X-1=0

m ~ i.f.p.

111.1.f

(11) +(33)

2(13) + 2(23)

2(12) + (22) }

i.f.p. given by (x

1- 4(1-X)3 =0

‘1 = .22815553

‘2
= .35220117

1

i.f.p.

‘3
= .419643w

n.f.p.

b.d.p. (see below)

not degenerate

= X3) ‘1
= .16374000

‘2 = .46622052 )
i.f.p.

r‘3 = 1- * = “37003948J

A non-trivial b.d.p. exists, which is a f.P. of the trans-

formation:

x; = 4X3(1-X3)El - X3(1-X3)]

This f.p. is given by the root of (x = X3)

4X3 -8X2+8X-3=0

which leads to

113



TABLE II (cont.)

111.1.f (cont.)

(n+2)= (n)
= .31944846,Xl

(n+l)
‘1 ‘1

= .56519772

(n+2)= (n)=o (n+l)
‘2 ‘2 ? ‘2 = .43480228

(n+2)= (n)= .68055154,x3(n+l)=o
‘3 ‘3

Actually

m ~ i.d.p.:

(n+2)= (n)= .17899745,x (n+l)=.40f04579
‘1 ‘1 1
(n+2)= (n)

= .20944248,X2
(n+l)

‘2 ‘2 = .475108701i.d.p.(n+2)= (n)= .61156007, x3(n+l)

‘3 ‘3
= .11884551

111.1.g

(22) + (33)

1

b.f.p. (cf. 1.2.n)

2(12) +2(23) b.d.p.

2(13) + (11)
degenerate

i.f.po exists: X,=ti
2

= .29289322
1

m ~ i.f.p. = 1/2

1

i.f.p.

;== = .207~0678 ‘cf”1”2”a)
2

111.1.h

(22) + (33)

}

b.d.p.
2(12) +2(13) not degenerate

2(23) + (11)

i.f.p. given by (x = xl)
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TABLE II (cont.)

111.1.h (cont.)
.

8X4 - 20x3+17x2-7x+1=0

m + i.f.p.

UI.l. i

(22) + (33) )

J
b.d.p.

2(13) + 2(23)
not degenerate

2(12) + (11)

i.f.p. given by (x = X5)

4X4 - 8X3+3X2+3X-1=0

m ~ i.f.p.

111.2.l.a

(II) +2(23)

(22) +2(13)

(33) +2(1=’) 1

i.f.p.:
‘1= ‘2=

m + i.f.p.

3 n.f.p.’s

not degenerate

‘3
= 1/3

‘1 = .26882443

‘2 = .39311571

}

ief.p.

‘3
= .33805986

‘1= .27204695

‘2 = .42351278

“}

i.f.p.

‘3
= .30444027
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TABLE II (cont.)

111.2.l.b

(22) +2(13)

}

n.f.p.

(11) +2(23) b.d.p.

(33) +2(12)
not degenerate

i.f.p.:
‘1= ‘2=

X3= 1/3

m ~ i.f.p.

111.2.l.e

(33)+2(E)

1b.t.p.
(11) +2(23) not degenerate

(22) +2(13)

i.f.p.: x =x =x
12

s= 1/3

m + i.f.p.

111.2.2.a

(11) +2(13) ~

I 3 n.f.po’s
(22) + 2(23)

doubly degenerate

(33)+ 2(i2) J
i.f.p.:

‘1= ‘2=
X3= 1/3

m ~ n.f.p. (xl= 1) with initial vectors

‘1 = .37165698 ‘1 = .56881955

‘2
= .08887955 and

‘2
= .00173087

‘3
= .53946347

‘3
= .42944958
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TABLE II (cont.)

111.2.2.a (cont.)

m + n.f.p. (x2=

‘1
= .02W960~

‘2
= .18806313

‘3
= .78704084

111.2.2.b

(22) + 2(23)

(II) + 2(13)

(33) + a(~) )

i.f.p.:
‘1= ‘2=

m ~ b.d.p.

111.2.2.C

(33) + 2(12)

(22) + 2(23)

(11) + 2(13) 1
i.f.p.:

‘1= ‘2=

m ~ i.f.p.

111.2.2.e

(33) +2(12)

(11) +2(13)

(22) +2(23) 1
i.f.p.: xl= x2=

1) with initial vector:

(See Section XI for discussion)

n.f.p.

b.d.p.

not degenerate

‘3
= 1/3

n.f.p.

b.f.p. (cf. 1.2.n)

b.d.p.

degenerate

X3= 1/3

b.t.p.

not degenerate

X3= 1/3 m ~ i.fops
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TABLE II (cont.)

111.2.3.a

(11) +2(12) )

}

3 n.f.p.’s
(22)+2(23)

triplydegenerate

(33)+2(13) J
i.f.p.:

‘1= ‘2= ‘3
= 1/3

m ~ no convergence (see Section XI for discussion)

111.2.3.b

(22) +2(23)

1

n.f.p.

(11) +2(12) b.f.p. (cf. 1.2.n)

b.d.p.
(33) +2(13) degenerate

i.f.p.:
‘1=X2= ‘3= 1/3

m ~ n.f.p. with initial vectors:

‘1 = .295179%
‘1

= .05841813

‘2 = .10369878 and
‘2 = .25242$8

‘3
= .60112188

‘3
= .68915819

m ~ b.d.p.with initialvector:

‘1 = .35613727

‘2 = .62067802

‘3
= .02318471
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TABLE II (cont.)

111.2.3.e

(33)+2(13)

1b.t.p.
(11) +2(12)

not degenerate

(22) +2(23)

i.f.p.:
‘1= ‘2= ‘3

= 1/3

m ~ b.t.p.

111.2.3.f

(22) +2(23)

1

b.t.p.
(33) +2(13) not degenerate

(II) +2(I2) J
i.f.p.:

‘1= ‘2= X3= 1/3

m ~ b.t.p.
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INTRODUCTION TO TABLE III

This table lists a few h-variable general.i.zations(and two 5-

variable ones) of selected 3-variable systems. The method of generali-

zation is explained in the text (Section VII> 1.5.j - ext - 1 and sub-

sequent discussion). The basic notation is that of Table II, but

degeneracy, b.f.p.’s, n.f.p.’s~ etc.$ are not noted.
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TABLE III

EXAMPLES OF BINARY REACTION SYSTEMS FOR N > 3

I.l.c -ext-l

(11) + (22) + (44) + 2(14) + 2(24) + 2(34)

2(13)+ 2(23)

2(12)

(33)

i.f.p. given by (x = xl):
‘1 = .35833637

.
16x3(1+x) - 1 = O

‘2 = .33933212

I

i.f.p.
m ~ i.f.p.

‘3
= .24319009

‘4
= .05914142‘

1.2.a- ext - 1

(11) + (22) +2(I2) +2(14) +2(24) +2(34)

(44)+2(23)

2(13)

(33)

i.f.p. given by (x = x ):
3 ‘1

= 1/2

4
x- 2x3-x2+2x-l/2=o

‘2
= .04258212

}

i.f.p.
m ~ i.f.p.

‘3
= .34W8137

‘4
= .11633651
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1.2.k - ext - 1

(11) -I-(44)+2(23) +

(22)+2(13)

2(12)

(33)

TABLE III (cont.)

2(14) + 2(24) + 2(34)

‘1 = .42397159
\

i.f.p. given by (x = X1):

8X2(8X3-4X-1) + 3 = O

‘2
= .28099237

I

i.f.p.

‘3
= .23826556

m ~ i.f.p. ‘4
= .05677048 J

1.2.P - ext - 1

(22) + (44) +2(13) +2(14) +2(24) +2(34)

(11) +2(K)
xl_~3- l_ .~602540

2

2(23) ‘2
= 1/2

X3 = ~~ = .llg65684(33) 2
\

i.f.p.

m~b.d.p. (1,0,0,0), (0~1~0~0) )
=x

‘4 32
= .01431776

1.3.g - ext - 1

(22) + (44) +2(E) +2(14) +2(24) +2(34)

2(13) + 2(23)

(11) ‘1 = .45003654
\

(33) ‘2
= .w64~~oo

}

i.f.p.
i.f.p.givenby (X = Xl) ‘3

= .20253289
)

2X5+2X4+3X3+3X2-1= O ‘4
= .04101957
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TABLE III (cont.)

1.3.i - ext - 1

(22) + (44) +2(23) +2(14) +2(24) +2(34) /

2(12) + 2(13)

(11) ‘1 = ● 37973137

(33) ‘2
= .45527986

I

i.f.p.

i.f.p. given by (x = xl):
‘3

= .14419607

43
2x +x +X2 +2X-1=0 ‘4

= .02079250

m ~ i.f.p. with initial vectors:

(o)
= .23580752

(o) =
‘1 ‘1 .35636919

(0,= .45570511 and
(o)

‘2 ‘2
= .01450795

(o)
= .16718123

(o)

‘3 ‘3
= .34834313

(o)
= .14130614

(o)

‘4 ‘4
= .28057973

m ~ b.t.p. with initial vector:

(o)
‘1

= .03633558

(o)
‘2

= .~5482236

(o)
‘3

= .04547126

(o)
‘4

= .76337080

1.4.e - ext - 1

(22) + 2(12) + 2(23) + 2(14) + 2(24) + 2(34)

(11) + (44)

2(13)

(33)
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TABLE III (cont.)

1.4.e - ext - 1 (cont.)

i.f.p. given by (x = X5):

42x +x+x- 1/4 = o

m ~ b.d.p.

‘1 = 1/2

‘2
= .25179510

}

i.f.p.

‘3
= .20583631

‘4 = .04236859‘

1.5.j -ext-l

(22) +2(I2) +2(23) +2(14) +2(24) +2(34)

(44)+2(13)

(11) ‘1 = .48325036

(33) ‘2 = .22868204

}

i.f.p.
i.f.p.givenby (x = xl):

‘3
= .23353~l

8 4 +2X3+X2+X-1 o
x +x =

‘4 = .05453669

(Continued on following page.)
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TABLk III (cont.)

1.3.J - ext - 1 (cont.)

m ~ interiorperiodicpointof period12:

Cycle ‘1 ‘2 ‘3 ‘4

n .66002500 .33689080 .00014037 .00294383

n+l .56417301 .00019396 .43563301 .00000002

n+2 .00038792 .49154477 .31829119 .18977612

n+3 .86242865 .03626192 .00000015 .10130928

n+4 .24595298 .01026383 .74378319 O(i.e.< 5x10-9)

n+5 .02042231 .36587139 .06049287 .55321343

n+6 .68740763 .30851591 .00041707 .00365939

n+7 .52688378 .00058679 .47252926 .00000017

n+8 .00117358 .49793601 .27760650 .22328391

n+9 .87242595 .05050729 .00000138 .07706538

n+10 .23293147 .00594148 .76112705 O(i.e.<~x10-9)

n+ll .01184765 .35458089 .05425707 .57931439
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TABLE III (cont.)

1.5*J -ext-2

(22) +2(12) +2(23) +2(14) -I-2(24)+2(34) +2(15)

+2(35) +2(45)

(55)+2(13) ‘1
= .48324807

(11) ‘2
= .22571344

(33) ‘3
= .23352870

(44)
‘4

= .05453565

i.f.p.givenby (x = xl)
‘5

= .00297414

16+X8+X4x 32+2x+x+x-1= o

m ~ interiorperiodicpoint of period6:

+ 2(25)

I

i.f.p.

:ycle ‘1 ‘2 ‘3 ‘4 ‘5

n .83355924 .034u438 .01389264 .0209>486 .09746888

n+l .27188601 .03266085 .69482102 .00019301 .00043911

n+2 .06547728 .37782442 .07392200 .48277626 .00000004

n+3 .74749492 .00968042 .00428727 .00>46446 .23~7293

n+k .38047069 .06073242 .5587486P .00001838 .00002986

n+5 .11786703 .42517497 .14475794 .31220006 O(i.e.<5x10-9)

and x.(n+6)= x (n)
1 i
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TABLE III (cont.)

1.5.1 - ext - 1

(22) +2(13) +2(23)

(44) +2(12)

(11)

(33)

i.f.p. given by (x =

+ 2(14) + 2(24) + 2(34)

‘1
= .49177311

‘2
= .20789913

}

i.f.p.

‘3
= .24184079

xl): ‘4
= .05848697

8B43
x -2x+x-2x -X2+3X-1=0

m ~ i.f.p.

1.6.b- ext - 1

2(1.2)+ 2(13)+ 2(14)+ 2(23) + 2(24)+ 2(34)

(11)+ (44)
‘1 = .56609505

(22)
‘2

= .32057516

(33)
}

i.f.p.

‘3
= .10276844

i.f.p.givenby (x =X2):
‘4

= .01056135

2X8+2X6+2X5.-X4+2X3 -X2-3X+1=0

m + i.f.p.

This i.f.p.is very closeto that of 11.3.d-ext-l(q.v.),as

mightbe expected.
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TABLE III (cont.)

1.6.c - ext - 1

2(12) +2(13) + 2(23) + 2(14)+ 2(24)+2(34)

(22) + (44)

(11)

(33)

i.f.p. given by (x = xl):
‘1

= .56612299

X7+ X5 +X4+X2 - 1/2 = O X2 = .01066456

}

i.f.p.
m ~ i.f.p.

‘3
= .3204952~

(cf. 1.6.b - ext - 1)
1

‘4 = .10271720

11.3.d - ext - 1

(44)+2(12) +2(13) +2(14) +2(23) +2(24) +2(34)

(33)

(11)

(22)

i.f.p. given by (x = xl):
‘1

= .56616082

2 48x +x +x +x - 1 =0
‘2

= .10274465

}

i.f.p.
(cf. Eq. 21) of the text)

‘3
= .32053807

‘4
= .01055646
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11.3.d - ext - 2

(55) + 2(12) + 2(13)

TABLE III (cont.)

+ 2(14) + 2(15) +2(23) +2(24) +2(25)

+2(34) +2(35) +2(45)

(33)

(11)

(22)

(44)
‘1

= .56612380

i.f.p. givenby (x = xl):
‘2 = .10271779

2 4 8 ~6x+x +X+x +x-l=o
‘3

= .32049615
\
iof.p.

(cf. Eq. 21) of the text)
‘4 = .01055094

m ~ i.f.p.
‘5

= .00011132

111.1.c - ext - 1

(11) + (22) + 2(14) + 2(24) + 2(34)

2(13)+ 2(23)
‘1 = ● 35443555

2(12)+ (44)
‘2 = .34053827

(33)
‘3

= .24500079

i.f.p.givenby (x = X3):
‘4

= .06002539

J

}
i.f.p.

1 - X3 + 4(2X-1)(1-X-X2)2 = o

m ~ i.f.p.
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111.1.f - ext - 1

(11) + (44) +

2(13) +2(23)

2(12) + (22)

(33)

TABLE III (cont.)

2(14)+2(24) +2(34)

i.f.p. given by (x = x ):
3

4(1-X-X2)2(X-1) + 1 =0

m ~ i.f.p.

‘1 = .23278771

‘2 = .36744075

}

i.f.p.

‘3
= .Y608408

‘4 = .09368746
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EXPLANATION OF TABLES IV AND V

Each of these tables consists in a tabulation of the convergence

behavior of random initial points under 26 transformationswhichare

simplemodificationsof 1.3.g. These26 systemsare generatedas follows

(seeSectionVIII.2of text):

In TableIV, we retainthe “skeleton”

‘i
= @x22 + 1/2 X32 ‘2X1X2+”””

‘; =2XX+2XX +0. ●

13 23

‘isl/2x12+...

To this we add in all possible ways the missing terms 1/2 X12, 1/2 X22,

1/2 X3% Twenty-six new systems result (the 27th is identical with 1.3.g).

The notation is the same as in the previous tables, but we give only the

numerical results, omitting comments and i.f.p. equations.

Table V is similar, except that the skeleton is

2 2
‘;=X2 ‘X3 ‘X1X2+”””

‘;= ‘1X3 ‘X2X3+”””
2=x +. . .

x; 1

and the missingtermsare ‘1X2)‘1X3>‘2X3*
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TABLE IV

MODIFICATIONS OF SYSTEM 1.3.g

Case 1.

1/2(11) + (22) + (33) +2(1.2) ‘1
= .56804585

2(13) +2(23) ‘2
= .270616111i.f.p.

1/2(11)
‘3

= .16133804

m + i.f.p.

Case 2.

1/2(22) + 1/2(33) +2(12)

2(13) +2(23) + 1/2(11) + 1/2(22) + 1/2(33)

1/2(11)
‘1

= .4@68722

m * i.f.p.
‘2

= .40674205

}

i.f.p.

‘3
= .11457073

Case 3.

1/2(22) + 1/2(33) +2(12) ‘1
= .38326262

2(13) +2(23) ‘2
= .37085176

}

i.f.p.

(11) +1/2(22) +1/2(33)
‘3

= .24588562

m ~’ i.f.p.

132



TABLE IV (cont.)

Case 4.

1/2(11)+ (22)+ 1/2(33)+2(1.2) X1 = .56267887

2(13)+2(23) + 1/2(33)
‘2 = .27901737

)

i.f.p.

1/2(11)
‘3

= .15830376

m ~ i.f.p.

Case5.

1/2(11)+ 1/2(22)+ (33)+2(12) xl = .54858377

2(13)+2(23) + 1/2(22)
‘2 = .30094415

1

i.f.p.

1/2(11)
‘3

= .15047208

m- i.f.pe

Case 6.

(22)+ (33)+2(12)
‘1 = .5113Q605

2(13)+2(23) + 1/2(11)
‘2 = “35797701

1

i.f.p.

1/2(11)
‘3

= .~307~694

m ~ i.f.p. 1

Case 7.

1/2(11)+ (22)+ 1/2(33)+2(E) xl = .55386328

2(13)+ 2(23)
‘2

1

= .27874434‘ i.f.p.

1/2(11)+ 1/2(33)
‘3

= .16739238

m+ i.f.p.
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TABLE IV (cont.)

Case 8.

1/2(11)+1/2(22) + (33)+2(U)

2(13) +2(23)

1/2(11)+ 1/2(22)

m ~ i.f.p.

Case 9.

1/2(22)+ 1/2(33)+2(12)

2(13)+2(23) + 1/2(11)+

1/2(11)+ 1/2(33)

m ~ iof.po

Case 10.

1/2(22)+ 1/2(33)+2(12)

2(13)+2(23) + 1/2(11)+

1/2(11)+ 1/2(22)

m ~ i.f.p.

Case 110

1/2(22)+ 1/2(33)+2(12)

2(13)+2(23) + 1/2(22)+

(11)

m ~ i.f.p.

1/2(22)

1/2(33)

1/2(33)

‘1= .52319512
1

‘2
= .29610055

)

iofop.

‘3
= .18070433

‘1 = .47452268
1

‘2
= .40572059

J

i.f.p.

‘3
= .11975673

‘1 = .43437288

‘2 = .39376269

1

i.f.p.

‘3
= .17186443

‘1
= .42681726

1

‘2
= .39100977

1

i.fop.

‘3
= .18217297
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TABLE IV (cont.)

Case 12.

1/2(22) + l/2(33) +2(12) ‘1
= .481811$

2(13) +2(23) + 1/2(11) + 1/2(22) X2 = .40211755

1

i.f.p.

1/2(11) + 1/2(33)
‘3

= .11607109

m ~ i.f.p.

Case 13.

(22)+1/2(33) +2(1.2) ‘1
= .50829830

2(13) +2(23) + 1/2(11)+ 1/2(33) X2 = .36251813

1

i.f.pe

1/2(11)
‘3

= .12918357

m ~ i.fop.

Case lb.

1/2(11)+ 1/2(22)+ 1/2(33)+ 2(12) Xl = .54269064

2(13)+2(23) + 1/2(22)+ 1/2(33) X2 = .31005278

}

ief.p.

1/2(11)
‘3

= .14725658

m ~ i.f.p.

Case 15.

1/2(22)-i-1/2(33)+2(12) ‘1 = .39529957

2(13) +2(23) + 1/2(33) ‘2 = .37727171

}

i.f.p.

(11)+1/2(22)
‘3

= .22742872

m+ i.f.p.
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TABLE IV (cont.)

Case 16.

1/2(22)+ 1/2(33)+2(12) ‘1 = .41841444

2(13)+2(23) + 1/2(22) ‘2 = .%772371

)

i.f.p.

(11)+1/2(33)
‘3

= .19386185

m ~ i.f.p.

Case 17.

1/2(22)+1/2(33) +2(12) ‘1 = .42566975

2(13)+2(23) + 1/2(11) ‘2 = .39057539

}

i.f.p.

1/2(11)+ 1/2(22)-I-1/2(33)
‘3

= .18375486

m ~ i.f.p.

Case 18.

1/2(22)+ (33)+2(12) ‘1 = .41080271

2(13)+2(23) ‘2 = .35678917

1

i.f.p.

(11)+ 1/2(22)
‘3

= .2324081.2

m ~ i.f.p.

Case 19.

(22) + 1/2(33)+ 2(12) ‘1 = .44081g56

2(13)+2(23) ‘2 = .34107310

1

i.f.p.

(11)+ 1/2(33)
‘3

= .21810734

m ~ i.f.p.

(Veryslow convergence;Jacobian = .99411052at i.f.p.)
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TABLE IV (cont.)

Case 20.

1/2(11) + 1/2(22) + 1/2(33)+ 2(12)

2(13)+2(23) ‘1 = 1/2

%1/2(11)+ 1/2(22)+ 1/2(33) x2 = 5 - 1= .30901699

1

i.f.p.

m + iof.p. 3-V5
‘3=7

= .190j8301

Case 21.

1/2(11) + 1/2(22) i-1/2(33) +2(12)

2(13)+2(23) -I-1/2(22) ‘1 = .53484692

1/2(11)+1/2(33) ‘2 = .31010205

1

i.f.p.

m ~ i.f.p.
‘3

= .15505103

Case 22.

1/2(11) +1/2(22) + 1/2(33) +2(12)

2(13)+2(23) + 1/2(33) ‘1
= .7U57583

1/2(11)+1/2(22) ‘2 = .30963296

1

i.f.p.

m ~ i.f.p.
‘3

= .178791.21

Case 23.

(22)+1/2(33) +2(U) ‘1 = .50306514

2(13)+2(23) + 1/2(11) ‘2 = .36118335

1

i.f.p.

1/2(11)-I-1/2(33)
‘3

= .13575151

m ~ i.f.p.
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TABLE IV (cont.)

Case 24.

(22) + 1/2(33) +2(12) ‘1
= .45127091

2(13) +2(23) + 1/2(33) ‘2
= .34508366

1

i.f.p.

(11) ‘3
= .20$4543

i.f.p. given by (x = xl)

3X4 . 6X2 i 2X+2=0

m ~ i.t.p.:

(n+3)= (n+l)= (n+2)(n)= .87777286,xl
‘1 ‘1

.00766150,xl = .34944206

~2(n+3)= ~2(n)= .00011739,x2
(n+l)=

.22185332, X2
(n+2)=

.65049924

1

i.t.p.

(n+3)= (n)= .~2~0975, x ‘n+l)= .77048518,x ‘n+2)= .00005870
‘3 ‘3 3 3

Case 25.

1/2(22)+ (33)+2(V) ‘1 = .44406835

2(13)+2(23) + 1/2(11) ‘2
= .38371478

1

i.f.p.

1/2(11)+“1/2(22) ‘3
= .17221687

m ~ i.f.p.

Case26.

1/2(22)+ (33)+2(E)

2(13)+2(23) + 1/2(22)

(11)

‘1 = .43425854

‘2
= .37716097

}

iof.pe

‘3
= .18858049

m ~ i.f.p.
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TABLE V

MODIFICATIONS OF SYSTEM 1.3.g

Case 1.

(22)+ (33)+ 2(12)+ (13)+ (23) xl = .52488860

(13)+ (23)
‘2 = .19960336

1
i.f.p.

(11)
‘3 =

.27550804)

m ~ i.f.p.

Case 2.

(22) + (33) + (1-2)

2(13) -I-2(23)+ (12)

(11)

m ~ i.f.p.

Case 3.

(22)+ (33)+ (1-2)

(13)+ (23)

(11)+ (12)+ (13)+ (23)

m ~ i.f.p.

Case 4.

(22)+ (33)+2(J-2)+ (13)

(13)+2(23)

(11)

m ~ i.f.p.

‘1
= .39816095

‘2 = .44330691

1

i.f.p.

‘3
= .15853214

‘1 = .32471796

‘2 = .24512233

)

i.f.p.

‘3
= .43015971

‘1 = 1/2

‘2 = 1/4

1

i.f.p.

‘3
= 1/4
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TABLE V (cont.)

Case 5.

(22)+ (53)+2(12) + (23)

2(13)+ (23)

(11)

m + i.f.p. (slow convergence)

Case 6.

(22)+(33) +(12) + (13)+(23)

(13)+ (23)+ (12)

(11)

m + i.f.p.

Case 7.

(22)+ (33)+!2(12)+ (13)

(13)+(23)

(11)+ (23)

m ~ i.f.p.

Case 8.

(22)+ (33)+2(12) + (23)

(13) + (23)

(11)+ (13)

m ~ i.f.p.

‘1 = .48053382

‘2 = .288553431i.f.p.

‘3
= .23091275

‘1= .46557123
1

= .31767220

1

i.f.p.
‘2 (cf.Case 9)

‘3
= .21675657

‘1 = .48787213

‘2 = .21060631

}

i.f.p.

‘3
= .30152156

‘1 = .43691113

‘2 = .22408140

1

i.f.p.

‘3
= .33900747
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TABLE V (cont.)

Case 9.

(22) +(33) +(I2) +(13) +(23)

(13) + (23)

(11) + (12)

Case 10.

(22) +(33) +(12)

2(13) + (23) + (12)

(II)+ (23)

m- i.f.p.

Case 11.

(22) +(33) + (12)

(13)+2(23) +(12)

(11)+ (13)

m ~ i.f.p.

Case M?.

(22)+(33) +(12)

2(13) + 2(23)

(11)+ (E)

m ~ i.f.p.

‘1 = .46557123]

= .21675657
}

i.f.p.
‘2 (cf.Case 6)

‘3 =
.31767220j

‘1
= .36632453

‘2
= .40727446

}

i.f.p.

‘3
= .22640101

‘1
= .37008112

‘2 = .41249400

}

i.f.p.

‘3
= .21742488

‘1 = “35320996

‘2
= .38577366

}

i.f.p.

‘3
= .26101638
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TABLE V (cont.)

Case 13.

(22)+ (33)+ (12) +(23)

2(13)+ (23)+ (12)

(11)

m ~ i.f.p.

Case 14.

(22)+(33) +(12) +(13)

(13)+2(23) +(12)

(11)

m ~ i.f.p.

Case 15.

(22) + (33)+(12)

(13)+2(23)

(11) +(12) + (13)

m ~ i.f.p.

Case ~6.

(22) +(33) +(12)

2(13)+ (23)

(11)+ (12)+ (23)

m ~ i.f.p.

‘1 = .42578666

‘2 = .39291905

}

i.f.p.

‘3
= .18129429

‘1 = .42878157

‘2 = .38736479

1

i.f.p.

‘3
= .183435364

‘1= ‘2=
X3= 1/3 i.f.po

‘1= ‘2= ‘3
= 1/3 i.f.p.

142



Case 17.

(22)+ (33)+ (12)

(13)+ (23)+ (w)

(11) + (13)+ (23)

m ~ i.f.p.

TABLE V (cont.)

‘1= ‘2= ‘3
= 1/3 i.f.p.

Case 18.

(22)+ (33) +(12) +(23)

(13)+(23)

(11)+(12) +(13)

m + i.f.p.

Case 19.

(22)+ (33)+ (~) + (23)

(13)+ (23)

(11)+ (12) + (13)

m ~ i.f.p.

Case 20.

(22) + (33)+ 2(12)

(13)+ (23)

(11)+ (13)+ (23)

m ~ i.f.p.

‘1= ‘3
= .38196601

}
i.f.p.

‘2 = .23606798

(cf.Case 20)

‘1 = .41964338

‘2 = .22815549

}

i.f.p.

‘3
= .39220113

‘1= ‘3
= .38196601

}
i.f.p.

‘2 = .23606798

(cf.Case 18)
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TABLE V (cont.)

Case 21.

(22) + (33) +2(12)
‘1

= .k27884.76

2(13) i-(23)
‘2

= .30766792

}

i.f.p.

(11) +(23)
‘3

= .26444732

m ~ i.fop.

Case 22.

(22) +(33) +2(1.2)

(13) +2(23)

(11)+ (13)

m ~ i.f.p.

Case 23.

(22)+(33) +(li?)+(13)

(13)+(23) + (u)

(11)+(23)

m ~ i.f.p.

Case 24.

(22)+ (33)+(12) +(13)

(13)+2(23)

(11)+ (12)

‘1
= .41421356

}
i.f.p.

‘2= ‘3= “29289322

(cf. Case 24)

‘1 = .41594131

‘2 = -32699283
\

i.f.p.

‘3
= .25706586J

‘1 = .41421356

‘2= ‘3
= .29289322

(cf.Case 22)

}

i.f.p.
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TABLE V (cont.)

Case 25.

(22)+(33) +(I2) +(23)
‘1 = .40157157

(13) +(23) +(12)
‘2 = .32895639

1

i.f.p.

(11)+(13)
‘3

= .26947204

m ~ i.f.p

Case 26.

(22)+(33) +(12) +(23)

2(13)+ (23)

(11) +(12)

m ~ i.f.p.

‘1 = .39816095
1

‘2
= .31706428

J

i.fop.

‘3
= .28477477
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TABLE VI

SUPER-SYSTEMS

1.2.e - Super

a. Initial Configuration

Y~ = .03342810 Y4 = .19498$ Y7 = .1922299

Y2 = .30728575 Y5 = .0214.8296 y8 = .02173869

y3.= .03472276 y6 = .05711904 Yg = .13761085
f

b. Initial Configuration

Y~ = .06578151 Y4 = .07528814 Y7 = .32057547

Y2 = .02301108 Y5 = .13873987 y8 = .27225037

Y3 = .00731792 y6 = .03090597 Y9 = .06612967

Both of these gave the final periodic configuration (yi(U+2)= Y~
(n)~:

Y~
(n)

= .18055154 Y4
(n)= o

Y7
(n)

= .13889692

Y#2
(n)

= .38464618 Y5
(n)= o

y8
(n)=

.29590536

Y3
(n)= o

y6
(n)= o

Y9
(n)= o

(n-tl)
Y~ = .18055154 (n+l)

Y4 = .38464618 (n+l)=o
Y7

(n+l)=o (n-t-l)=o
Y2 Y5

y8(n+l)=o

(n+l)
= .13889692 (n+l) (n+l)=o

Y3 y6 = .295905~ Y9
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TABLE VI (cont.)

For the initial configuration

c.

Y~ = .14398619 Y4 = .06422167

y2 = .10409303 Y~ = .02141784

Y3 = .40338819 y6 = .06973376

the finalconfigurationwas (yi
(n+2)=y (n)):

i

Y~
(n)

= .10204732 Y4
(n)

= .21740114

Y2
(n)

= .21740114 ‘n)= .46315040Y5

Y3
(n)=o

y6
(n)=o

(n+l)
Y~ = .31$?44846 (n+l)=o

Y4

Y2
(n+l)=o (n+l)=oY~

Y3
(n+l)

= .24574926 (n+l)=o
y6

Y7 = .04324188

y8 = .07707331

Yg = .07284413,

Y7
(n)= o

y8(n)= o

Y9
(n)= o

Y7
(n+l)

= .24574926

(n+l)=oy8

(n+l)
Yg = .18905302
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TABLE VI (cont.)

.

I“3”g - Sw=r

Initial Configurations:

a.

Yl = .01631507 Y4 = .~~350670
‘7

= .24077161

Y2
= .06252989

‘5
= .05348809 y8 = .05243129

‘3
= .01977135 y6 = .03871014 Y9 = .40247586

b.

Y~ = .0464$)838 Y4 = .02351925 Y7 = .14210424

Y2 = .20513993 Y~ = .02478259 y8 = .00038505

Y3 = .11967344 y6 = .05513905 Y9 = .38275807

Tnese both gave the final configuration (y.(n+3)= ~ (n)).
1 i“

Yl
(n)

= .24781045

Y2
(t-l)

= .24675180

(n)
‘3

= .00324338

(n+l)
Yl = .54648124

(n+l)
Y2 = .00957014

(n+l)
Y3 = .18319231

(n-t2)
Y~ = .00651538

y2(n+2)= .03009170

Y3
(n+2)

= .o4411o82

Y~
(n)

= .24675180

Y5
(n)=

.24569765

y6
(n)

= .00322954

(n+l)
Y4 = .00957014

(n+l)
Y5 = .00016760

(n+l)
y6 = .00320812

(n+2)
Y4 = .03009170

(n+2)
Y5 = .13898048

(n+2)
y6 = .20372868

Y7
(n)

= .00324338 -

y8(n)
= .00322954

(n)
Y9 = .00004246

(n+l)=
‘7

.18319231

y8
(n+l)

= .00320812

Y9
(n+l)= .06141002

‘n+2)=.o4411O82Y7

(n+2)
y8 = .20372868

(n+2)
‘9

= .29864174
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TABLE VI (cont.)

Initial Configuration:

c.

Y~ = .11263988 Y4 = .0932297k Y7 = .03769313

Y2 = .23586952 Y5 = .00321861 Y8 = .00633159

‘3
= .16027686 Y6 = .09787061 Yy = .23285006

This gave the final configuration (y.(n+3)= Jn)):

Y~
(n)

= .04018182

Y2
(n)

= .04001017

Y3
(n)

= .00092591

(n+l)
Y~ = .36799967

(n+l)
Y2 = .00644452

(n+l)
Y3 = .12336144

(n+2)
Y~ = .05967020

(n+2)
Y2 = .27559068

(n+2)
Y3 = .40398281

1. A

Y4
(n)

= .18558236

Y5
(n)

= .18478956

Y6
(n)

= .00242894

Y4‘n+l)= .X642757

(n+l)

‘5
= .00641699

Y6
(n+l)

= .12283443

(n+2)
Y4 = .00104496

(n+2)
Yp = .00482623

(n+2)
Y6 = .00707467

Y7
(n)

= .27204143

y8
(n)

= .27087928

Y9
(n)

= .00356053

(n+l)
Y7 = .00481645

(n+l)
y8 = .00008435

(n+l)
Y9 = .00161458

(n+2)
Y7 = .02000274

y8
(n+2)=

●09238395
(n+2)

Y9 = .~3542376
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APPENDIX

1. In this appendix we summarize the results for a class of homogeneous

quadratic transformations quite distinct from the class we have called

Binary Reaction Systems. This class arises in a natural way in the

study of a certain crude model of the “evolutionaryprocess,” which

will be described below. It also has some mathematical interest,

owing to the fact that the limiting behavior of all systems belonging

to this class can be explicitly predicted.

2. The Evolutionary Model

Consider a large population in which each distinct “type” of indi-

vidual is labelled by an index pair (i,j), i,j = 1,2, . . ., N. IA

the fraction of the male population which is of type (i,j) be denoted

byx... We shall assume that x. .= x “ also, we take the number of
lJ lJ ji’

females of type (i,j) to be equal to the number of males of this

type--hence there is no need to denote the fraction of females by a

separate letter.

We now impose a mating rule (random mating is assumed) which states,

in effect, that if individuals of type (k,~ ) mate with individuals

of type (m,n), the progeny will be of all types (i,j) such that
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min (k)m)$ i ~max (k)m)
1)

min (l,n) S j & max (I,n)

Loosely speaking, we may call each index of a pair a “characteristic.”

A given mating will produce all possible children such that 1) is

satisfied, the distribution of the two indices determining the

progeny being the product of two identical distributions. The number

of children will, of course, be proportional to the number of parents

of each type. Mathematically:

(11+1)= T km ~nxkn)x (n)
‘ij Y~

‘J i mu
k) ~m~n

2)

The sum in 2) is to be carried out under the restriction 1). We

specify the system further by postulating:

km’
Y.j, = 7i*> 0, min(k,m) ~ i< max(k,m)

= o otherwise;

k

In addition, we normalize by taking:

H

z (o) =1,
Osxif% 1,

‘ij
all i,j

j.,j=l

3)

4)

5)

6)
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It is then evident that we have:

N

2 ~(n)=l
ij

ijj

for all n.

The class of systems defined

discuss. However, it may be

actual evolutionary model in

Evolution is assumed to take

above is the one we shall actually

of interest to at least mention the

connection with which equation 2) arises.

place by mutation. A type (i,j) can give

rise to two new types (i+l,j) and (i,j+l) with

When we include this (linear) effect, we get a

some small probability.

set of equations:

+ C/2(xi-ljj+ ‘i,j-,l) +‘ij = - e ‘ij
.!.

Here c is taken as some small number.

numerical experiments on systems of the

of the 7i~ satisfying 3), 4), 5). Two

choices are:

~jk= 1

()

Ij-kl

i alj-kl i-min(j,k)

and

We actually

form 7) with

particularly

7i
jk =

lj-k~+ 1 )
min(j,k) < i < max(j,k)

performed many

special values

convenient

8)

9)

= o otherwise
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Note that with our definition 3) we may take the sum in 2) as un-

restricted, i.e., over-all k,~,m,n = 1,2, . . ., N.

We shall not discuss the behavior of the “mutating” system 7) in

this report, but rather restrict ourselves to the pure “mating”

system 2).
(1)

3“ If we sum over one

~ (n+l) =
i

N
~

of the indices in 2), we obtain the system:

N

Ci= 2 ‘ij

2’ Yi
(n)C (n) i=l

~ck m >“””> N

k,m=l

J=l

and, of course,

N

z ~(n)=l
i

all n.

i=l

km
By virtue of condition 5) on the yi , the system

linear invariant (distinct from z Ci = 1); in

10) possesses

fact:

10)

11)

1.2)

a

13)

‘l)It may be objected that our mating rules have nothing to do with
Mendel’s laws. This is intentionally the case. The Mendelian case
has been treated in great generality-in a series of papers by Hilda
Geiringer; cf., e.g., Annals of Mathematical Statistics, 15 (1944),
pp. 25-57, Genetics, ~.(1948) > PP” 546-564, etc. See aM%C. C. Li:
Population Genetics, University of Chicago, Chicago, 1955.
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The consequences of this property are very interesting. It turns

out that the existence of this linear invariant enables one to

predict explicitly the limiting behavior of any initial vector

(o)
‘0)) when iterated according to 10).(Cl(% C2 , . . ● CN

Using the fact that ~ Ci = 1 is also an invariant, we may define

an invariant:

N-l

u— =
z

(N-i)Ci 14)

i=l

a is, of course, explicitly determined by the initial vector. It

can then

definite

be proved that every

fixed point which is

initial vector will converge to a

determined as follows:

For the given value of a , there is one index J such that:

N- j~t7>N- j-l 15)

The f.p. is then explicitly given by:

cJ=o
- (N-j-1)

cj+l= N-J-~

1

16)

all other C. = O
1

The f.p. is independent of the actual values of the coefficients
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Yi‘providing they satisfy 3), 4), 5)*(2)

These results can easily be referred back to the original variables

x
.ij”

Defining a quantity a from 16) by:

17)

‘0))will con-we find that the corresponding symmetric tensor (xmn

verge to the final state:

1
x =—
‘J (licx)2

= x..=
a

‘j+l, j “=+1 (l+a)2
18)

CX2
‘J+l,J+l = (1~)2

(2‘Of course the rate of convergence will, in general, depend on the
km

actual values of the yi . In one case it is actually possible to

solve explicitly for the iterates as functions of n. This is the

case N = 2 where we find:

# = 1
[

+) + a2(2n-1)
2n 1

(o) (o)
C7=xll +Xw .

This case can be viewed as a generalization of the Mendelian law

for a single gene. The population has the same limiting configura-

tion in both cases, but for Mendel’s rules equilibrium is reached

in a single step (“Hardy’s Law”).
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The results can also be extended to the case of M “characteristics”

‘1’i2’ “ “ “ h“

The fraction of the population

denoted by xi . . This
“M1“”=

indices; hence, there are:

of type (il, . . ., iM) is then

is taken to be symmetric in all M

()N+M- 1

M

types of individuals in the population. The corresponding mating

rule is:

(n) (n)
‘s s

13”” “ ‘2M-1
%2s4. . . ‘m

If we sum over M-1 indices,we can again define:

N

Ci= z x.
1...
1 %

‘2’” ””’%=1

19)

20)

and we again get the system 10). In terms of the tenscm

x. . , the final state is:
l..*
1 %

1.56



x.
1

J?J”*”j = (lW)M

a
‘j+l, j,j . ● . S

= (l+idM 21)
.

.

.
~M

‘j+l,j+l,. . . j+l
= (lW)M

Here j and a are determined as in 16) and 17).

4. The explicit nature of these results is due to the existence of the

linear invariant o , which in turn is a consequence of the “mean-

jk
preserving” property 5) assumed for the coefficients yi . However,

the actual convergence properties are probably more closely connected

with the “index-limiting”condition 3). (Our Binary Reaction systems

do not, in general, have this property; the existence of oscillating

final states may well be a consequence of allowing such mating

rules as J@J - k # 3“) Some cases have been investigated in

which the conditions on the coefficients were relaxed. In particular,

we have considered systems for which we no longer require:

Yi
Jk>o

all j,k.

As an example, we chose the case:

N

2 Yi
jk= ~ + ~

j,k
+6j+l,k j-l,k

i=l

22)
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This corresponds to a sort of “selective mating scheme” in which

only individuals with “nearby” indices can mate. Of course we then

no longer have z Ci =1. In order to secure this property, we

must “renormalize” at every step, i.e., set:

If this is formally written out, the system is no longer quadratic.

There are then many types of fixed points possible. So far it has

not been possible to give an analytical treatment of such systems.(3)

(3) jk= *ij
+ bik

Note, however, that if we simply take 7i
2

, we find

that every initial vector is a fixed point.


